首页> 外文期刊>Engineering analysis with boundary elements >An upwind local radial basis functions-differential quadrature (RBF-DQ) method with proper orthogonal decomposition (POD) approach for solving compressible Euler equation
【24h】

An upwind local radial basis functions-differential quadrature (RBF-DQ) method with proper orthogonal decomposition (POD) approach for solving compressible Euler equation

机译:逆向局部径向基函数-微分正交(RBF-DQ)方法和适当的正交分解(POD)方法求解可压缩的Euler方程

获取原文
获取原文并翻译 | 示例

摘要

The current paper is an improvement of the developed technique in Shu et al. (2005). The proposed improvement is to reduce the used CPU time for employing the local radial basis functions-differential quadrature (LRBF-DQ) method. To this end, the proper orthogonal decomposition technique has been combined with the LRBF-DQ technique. For checking the ability of the new procedure, the compressible Euler equation is solved. This equation has been classified in category of system of advection–diffusion equations. Moreover, several test problems are given that show the acceptable accuracy and efficiency of the proposed scheme.
机译:目前的论文是对Shu等人开发技术的改进。 (2005)。提出的改进措施是减少使用局部径向基函数-微分正交(LRBF-DQ)方法所用的CPU时间。为此,适当的正交分解技术已与LRBF-DQ技术结合在一起。为了检查新程序的能力,求解了可压缩的欧拉方程。该方程已分类为对流扩散方程组。此外,给出了几个测试问题,这些问题表明了所提出方案的可接受的准确性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号