首页> 外文期刊>Energy & fuels >Permeability Reduction of Berea Cores Owing to Nanoparticle Adsorption onto the Pore Surface: Mechanistic Modeling and Experimental Work
【24h】

Permeability Reduction of Berea Cores Owing to Nanoparticle Adsorption onto the Pore Surface: Mechanistic Modeling and Experimental Work

机译:由于纳米颗粒吸附到孔表面而导致的Berea岩心的渗透性降低:机理建模和实验工作

获取原文
获取原文并翻译 | 示例
       

摘要

This paper examines an integrated approach to study the permeability alteration resulting from nanofluid flow through porous media. Hydrophilic nanostructure particles (NSPs) are dispersed in the brine stream at 0:05, 0.2, and 0.5 wt % concentrations and injected into several oil-wet Berea sandstones. The pressure drops across the cores and the effluent nanoparticle concentrations are monitored. To quantify the nanoparticle adsorption/detachment and straining behavior and associated effects on formation permeability, analytical mechanistic models are derived. using the method of characteristics. The interplay between nanoparticles and rocks is described by the classical particle filtration theory coupled with the maximum adsorption concentration model. All of the necessary parameters, e.g., the maximum adsorption concentrations, reversible or detachment adsorption concentrations, nanoparticle adsorption and straining rates, and corresponding formation damage coefficients, are characterized. The experimental results indicate that nanoparticle adsorption and straining (i.e., the maximum adsorption concentration and nanoparticle adsorption straining rates) are enhanced along with the increase of the nanoparticle injection concentration. As a result, the breakthrough of injected nanoparticles is delayed, the steady-state effluent concentration decreases, and the pressure drop increases more rapidly. The nanoparticle adsorption consists of reversible and irreversible adsorption. During post-flush, the reversible nanoparticle concentrations are enhanced by the increase of nanoparticle concentrations. In practice, this paper contributes to the following applications: (1) Lab experiments are applied to highlight the effects of nanoparticle adsorption, straining, and detachment behaviors On the formation damage. (2) The analytical mechanistic model provides physical insights to quantify nanofluid flow performance and can be extended to optimize the treatment of nanofluid application (e.g., injection concentrations) while considering both the loss of nanoparticles and their induced formation damage.
机译:本文研究了一种综合方法来研究由于纳米流体流过多孔介质而导致的渗透率变化。亲水纳米结构颗粒(NSP)以0:05、0.2和0.5 wt%的浓度分散在盐水流中,并注入到数个油湿的Berea砂岩中。跨芯的压降和流出物纳米颗粒浓度被监测。为了量化纳米颗粒的吸附/分离和应变行为以及对地层渗透率的相关影响,推导了分析机理模型。使用特征方法。纳米颗粒与岩石之间的相互作用通过经典的颗粒过滤理论和最大吸附浓度模型进行描述。表征所有必要的参数,例如最大吸附浓度,可逆或分离吸附浓度,纳米颗粒吸附和应变速率以及相应的地层破坏系数。实验结果表明,随着纳米颗粒注入浓度的增加,纳米颗粒的吸附和应变(即最大吸附浓度和纳米颗粒的吸附应变率)提高。结果,注射的纳米颗粒的穿透被延迟,稳态流出物浓度降低,并且压降更加迅速地增加。纳米颗粒吸附包括可逆和不可逆吸附。在后冲洗过程中,可逆纳米颗粒的浓度会随着纳米颗粒浓度的增加而增加。在实践中,本文对以下应用做出了贡献:(1)通过实验室实验来突出纳米颗粒的吸附,应变和脱离行为对地层损伤的影响。 (2)分析机制模型提供了物理见解,可以量化纳米流体的流动性能,并且可以扩展以优化纳米流体应用的处理(例如注射浓度),同时考虑纳米颗粒的损失及其诱导的形成破坏。

著录项

  • 来源
    《Energy & fuels》 |2017年第1期|795-804|共10页
  • 作者单位

    Univ Oklahoma, Mewbourne Sch Petr & Geol Engn, Norman, OK 73019 USA;

    China Univ Petr East China, Sch Petr Engn, Qingdao 266580, Shandong, Peoples R China;

    Univ Oklahoma, Mewbourne Sch Petr & Geol Engn, Norman, OK 73019 USA;

    China Univ Petr East China, Sch Petr Engn, Qingdao 266580, Shandong, Peoples R China;

    Univ Oklahoma, Mewbourne Sch Petr & Geol Engn, Norman, OK 73019 USA;

    China Univ Petr East China, Sch Petr Engn, Qingdao 266580, Shandong, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:39:28

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号