...
首页> 外文期刊>Energy & fuels >Studies of the Role of Heteroatomic Species in Jet Fuel Thermal Stability: Model Fuel Mixtures and Real Fuels
【24h】

Studies of the Role of Heteroatomic Species in Jet Fuel Thermal Stability: Model Fuel Mixtures and Real Fuels

机译:杂原子物种在喷气燃料热稳定性中的作用研究:模型燃料混合物和实际燃料

获取原文
获取原文并翻译 | 示例
           

摘要

Oxygen consumption and deposition measurements of model fuel mixtures and real fuels are used to explore the roles that heteroatomic fuel species and their interactions play during fuel autoxidation. A range of temperatures, oxygen consumption regimes, and flow environments are employed to provide results applicable over a wide range of fuel autoxidative conditions. The quartz crystal microbalance (QCM) provides a low temperature (140 degrees C) batch reactor environment for long reaction times (minutes to hours) with oxygen consumption and sensitive, in situ deposition measurements. The JFTOT system provides a flowing environment at higher temperatures (260 to 300 degrees C) and short residence times (seconds) which is modified with both an outlet oxygen sensor and with quantitative deposition measurements via ellipsometry. These techniques are used to study model systems (Exxsol D80 with added heteroatom species) and real jet fuels to determine the role of heteroatomic species in jet fuel autoxidation and deposition. The QCM results demonstrate that nitrogen and sulfur species (e.g., indoles/anilines and sulfides) interact during jet fuel autoxidation to encourage deposit formation. The further addition of phenol species, which occur naturally in most petroleum-derived jet fuels, facilitates even greater deposit production. This behavior is confirmed in the JFTOT via addition of nitrogen and sulfur-containing species to medium and low sulfur jet fuels. These results, along with gas chromatographic (GC) analysis of samples collected during autoxidation in the QCM, show rapid sulfur autoxidation followed by a slower reaction of the nitrogen species to form deposit precursors, implying a stepwise reaction of sulfur oxidation products with nitrogen species to form deposit precursors. These results have important implications for fuel production strategies and mitigation of thermal stability degradation during fuel pipeline transport, storage, and use.
机译:使用模型燃料混合物和实际燃料的耗氧量和沉积物测量值来探索杂原子燃料种类及其相互作用在燃料自氧化过程中的作用。采用一定范围的温度,耗氧量和流动环境,以提供适用于各种燃料自氧化条件的结果。石英晶体微量天平(QCM)提供了低温(140摄氏度)批反应器环境,可延长反应时间(数分钟至数小时),且耗氧量高,并且可以进行灵敏的原位沉积测量。 JFTOT系统可在较高的温度(260至300摄氏度)和较短的停留时间(秒)下提供流动的环境,该环境可通过出口氧气传感器以及通过椭偏仪进行的定量沉积测量进行修改。这些技术用于研究模型系统(添加杂原子物质的Exxsol D80)和实际的喷气燃料,以确定杂原子物质在喷气燃料自氧化和沉积中的作用。 QCM结果表明,在喷气燃料自氧化过程中,氮和硫物质(例如吲哚/苯胺和硫化物)相互作用,从而促进了沉积物的形成。在大多数石油衍生的喷气燃料中天然存在的酚种类的进一步添加促进了更大的沉积物生产。通过向中低硫喷气燃料中添加含氮和硫的物质,在JFTOT中证实了这种行为。这些结果以及在QCM中自氧化过程中收集的样品的气相色谱(GC)分析显示,硫快速自氧化,随后氮物种的反应速度变慢,形成沉积物前体,这意味着硫氧化产物与氮物种的逐步反应形成沉积物前体。这些结果对燃料生产策略和减轻燃料管道运输,存储和使用过程中热稳定性下降具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号