首页> 外文会议>International Conference on Stability, Handling and Use of Liquid Fuels >STUDIES OF THE ROLE OF HETEROATOMIC SPECIES IN JET FUEL THERMAL STABILITY: MODEL FUEL MIXTURES AND REAL FUELS
【24h】

STUDIES OF THE ROLE OF HETEROATOMIC SPECIES IN JET FUEL THERMAL STABILITY: MODEL FUEL MIXTURES AND REAL FUELS

机译:杂处理物种在喷射燃料热稳定性中的作用研究:模型燃料混合物和真正的燃料

获取原文

摘要

In this study we utilize oxygen consumption and deposition measurements of model fuel mixtures and real fuels to explore the role that heteroatomic fuel species, and their interactions, play during fuel autoxidation. A range of temperatures, oxygen consumption regimes, and flow environments are employed to provide results applicable over a wide range of fuel autoxidative conditions. The quartz crystal microbalance (QCM) provides a low temperature (140°C) static reactor environment for long reaction times (minutes to hours) with oxygen consumption and sensitive, in-situ deposition measurements. The JFTOT system provides a flowing environment at higher temperatures (260 to 300°C) and short residence times (seconds) which is modified with an outlet oxygen sensor measurement and quantitative deposition measurements via ellipsometry. These techniques are used to study model systems (Exxsol D80 with added heteroatom species) and real jet fuels to determine the role of heteroatomic species in jet fuel autoxidation and deposition. The QCM results demonstrate that nitrogen and sulfur species (e.g., indoles/anilines and sulfides) interact during jet fuel autoxidation to encourage deposit formation. The further addition of phenol species, which occur naturally in most petroleum-derived jet fuels, enables even greater deposit production. This behavior is confirmed in the JFTOT via addition of nitrogen and sulfur-containing species to medium and low sulfur jet fuels. Sample collection during autoxidation in the QCM with subsequent gas chromatographic (GC) analysis shows rapid sulfur autoxidation followed by a slow reaction of the nitrogen species to form deposit precursors, implying a step-wise reaction of sulfur oxidation products with nitrogen species to form deposit precursors. These results have important implications for production and mitigation of thermal stability degradation during fuel pipeline transport.
机译:在这项研究中,我们利用模型燃料混合物和实际燃料的耗氧和沉积测量来探讨杂原子燃料种类及其相互作用,在燃料自氧化期间发挥作用。使用各种温度,耗氧制度和流动环境来提供适用于各种燃料自动氧化条件的结果。石英晶体微稳定(QCM)提供低温(140°C)静态反应器环境,用于长反应时间(分钟至30分钟),具有氧气消耗和敏感,原位沉积测量。 JFTOT系统在较高温度(260至300°C)和短的停留时间(秒)处提供流动的环境,其通过椭圆形测量用出口氧传感器测量和定量沉积测量来修改。这些技术用于研究模型系统(exxsol d80,添加杂原子物种)和真正的喷射燃料,以确定杂原种在喷射燃料自氧化和沉积中的作用。 QCM结果表明,氮气和含硫物种(例如,吲哚/苯胺和硫化物)在喷射燃料自动氧化期间相互作用以促进沉积物形成。进一步加入在大多数石油衍生的喷射燃料中自然发生的苯酚物种,使得能够更大的沉积物产生。通过将含氮和含硫物质加入中低硫喷射燃料,在JFTOT中确认该行为。随后的气相色谱(GC)分析在QCM中自动氧化期间的样品收集显示快速硫自氧化,然后进行氮物质的缓慢反应形成沉积物前体,暗示硫氧化产物与氮物质的逐步反应形成沉积物前体。 。这些结果对燃料管道运输过程中热稳定性降解的生产和减轻了重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号