首页> 外文期刊>Energy & environmental science >Scalable fabrication of micron-scale graphene nanomeshes for high-performance supercapacitor applications
【24h】

Scalable fabrication of micron-scale graphene nanomeshes for high-performance supercapacitor applications

机译:用于高性能超级电容器应用的微米级石墨烯纳米网的可扩展制造

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Graphene nanomeshes (GNMs) with nanoscale periodic or quasi-periodic nanoholes have attracted considerable interest because of unique features such as their open energy band gap, enlarged specific surface area, and high optical transmittance. These features are useful for applications in semiconducting devices, photocatalysis, sensors, and energy-related systems. Here, we report on the facile and scalable preparation of multifunctional micron-scale GNMs with high-density of nanoperforations by catalytic carbon gasification. The catalytic carbon gasification process induces selective decomposition on the graphene adjacent to the metal catalyst, thus forming nanoperforations. The pore size, pore density distribution, and neck size of the GNMs can be controlled by adjusting the size and fraction of the metal oxide on graphene. The fabricated GNM electrodes exhibit superior electrochemical properties for supercapacitor (ultracapacitor) applications, including exceptionally high capacitance (253 F g(-1) at 1 A g(-1)) and high rate capability (212 F g(-1) at 100 A g(-1)) with excellent cycle stability (91% of the initial capacitance after 50000 charge/discharge cycles). Further, the edge-enriched structure of GNMs plays an important role in achieving edge-selected and high-level nitrogen doping.
机译:具有纳米级周期性或准周期性纳米孔的石墨烯纳米网(GNM)由于其独特的特征(例如,开放的能带隙,增大的比表面积和高的透光率)而引起了人们的极大兴趣。这些功能对于半导体设备,光催化,传感器和能源相关系统中的应用很有用。在这里,我们通过催化碳气化报告了具有高密度纳米穿孔的多功能微米级GNM的简便,可扩展制备。催化碳气化过程在与金属催化剂相邻的石墨烯上诱导选择性分解,从而形成纳米穿孔。可以通过调节石墨烯上金属氧化物的大小和比例来控制GNM的孔径,孔径密度分布和颈部尺寸。制成的GNM电极在超级电容器(超电容器)应用中表现出优异的电化学性能,包括极高的电容(在1 A g(-1)时为253 F g(-1))和高倍率的能力(在100 A时为212 F g(-1))具有出色的循环稳定性(50000次充/放电循环后的初始电容的91%)的g(-1))。此外,GNM的边缘富集结构在实现边缘选择和高水平的氮掺杂中起着重要作用。

著录项

  • 来源
    《Energy & environmental science》 |2016年第4期|1270-1281|共12页
  • 作者单位

    Yonsei Univ, Dept Mat Sci & Engn, 134 Shinchon Dong, Seoul 120749, South Korea|Univ Cambridge, Dept Mat Sci & Met, 27 Charles Babbage Rd, Cambridge CB3 0FS, England;

    Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA;

    Yonsei Univ, Dept Mat Sci & Engn, 134 Shinchon Dong, Seoul 120749, South Korea;

    Yonsei Univ, Dept Mat Sci & Engn, 134 Shinchon Dong, Seoul 120749, South Korea;

    Yonsei Univ, Sch Mech Engn, 134 Shinchon Dong, Seoul 120749, South Korea;

    Yonsei Univ, Sch Mech Engn, 134 Shinchon Dong, Seoul 120749, South Korea;

    Yonsei Univ, Dept Mat Sci & Engn, 134 Shinchon Dong, Seoul 120749, South Korea;

    Yonsei Univ, Sch Mech Engn, 134 Shinchon Dong, Seoul 120749, South Korea;

    Korea Electrotechnol Res Inst, Creat & Fundamental Res Div, Nano Carbon Mat Res Grp, Chang Won 642120, South Korea;

    Dongguk Univ, Dept Energy & Mat Engn, 26 Pil Dong,3 Ga, Seoul 100715, South Korea;

    Korea Inst Sci & Technol, Ctr Energy Convergence Res, Hwarangno 14 Gil 5, Seoul 136791, South Korea;

    Canadian Light Source Inc, Saskatoon, SK S7N 0X4, Canada;

    Canadian Light Source Inc, Saskatoon, SK S7N 0X4, Canada;

    Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA;

    Korea Inst Ceram Engn & Technol, Div Energy & Environm, Energy Efficient Mat Team, 101 Soho Ro, Jinju 660031, South Korea;

    Yonsei Univ, Dept Mat Sci & Engn, 134 Shinchon Dong, Seoul 120749, South Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号