首页> 外文期刊>Energy Conversion & Management >Chaotic improved PSO-based multi-objective optimization for minimization of power losses and L index in power systems
【24h】

Chaotic improved PSO-based multi-objective optimization for minimization of power losses and L index in power systems

机译:改进的基于PSO的混沌多目标优化,可将电力系统的功率损耗和L指标降至最低

获取原文
获取原文并翻译 | 示例

摘要

Multi-objective optimal reactive power dispatch (MOORPD) seeks to not only minimize power losses, but also improve the stability of power system simultaneously. In this paper, the static voltage stability enhancement is achieved through incorporating L index in MOORPD problem. Chaotic improved PSO-based multi-objective optimization (MOCIPSO) and improved PSO-based multi-objective optimization (MOIPSO) approaches are proposed for solving complex multi-objective, mixed integer nonlinear problems such as minimization of power losses and L index in power systems simultaneously. In MOCIPSO and MOIPSO based optimization approaches, crossover operator is proposed to enhance PSO diversity and improve their global searching capability, and for MOCIPSO based optimization approach, chaotic sequences based on logistic map instead of random sequences is introduced to PSO for enhancing exploitation capability. In the two approaches, constrain-prior Pareto-dominance method (CPM) is proposed to meet the inequality constraints on state variables, the sorting and crowding distance methods are considered to maintain a well distributed Pareto optimal solutions, and moreover, fuzzy set theory is employed to extract the best compromise solution over the Pareto optimal curve. The proposed approaches have been examined and tested in the IEEE 30 bus and the IEEE 57 bus power systems. The performances of MOCIPSO, MOIPSO, and multi-objective PSO (MOPSO) approaches are compared with respect to multi-objective performance measures. The simulation results are promising and confirm the ability of MOCIPSO and MOIPSO approaches for generating lower power losses and smaller L index than MOPSO method.
机译:多目标最优无功功率分配(MOORPD)寻求不仅使功率损耗最小化,而且同时提高电力系统的稳定性。本文通过将L指标纳入MOORPD问题来提高静态电压的稳定性。提出了基于混沌的改进的基于PSO的多目标优化(MOCIPSO)和改进的基于PSO的多目标优化(MOIPSO)方法来解决复杂的多目标,混合整数非线性问题,如电力系统中的功率损耗和L指数的最小化。同时。在基于MOCIPSO和基于MOIPSO的优化方法中,提出了交叉算子以增强PSO的多样性并提高其全局搜索能力;对于基于MOCIPSO的优化方法,将基于逻辑映射而不是随机序列的混沌序列引入PSO以提高利用能力。在这两种方法中,提出了一种约束先验的帕累托支配方法(CPM)来满足状态变量的不等式约束,考虑采用排序和拥挤距离方法来保持分布良好的帕累托最优解,此外,还提出了模糊集理论。用于提取帕累托最优曲线上的最佳折衷解。提议的方法已经在IEEE 30总线和IEEE 57总线电源系统中进行了测试。将MOCIPSO,MOIPSO和多目标PSO(MOPSO)方法的性能与多目标性能指标进行了比较。仿真结果是有希望的,并证实了MOCIPSO和MOIPSO方法比MOPSO方法产生更低的功率损耗和更小的L指数的能力。

著录项

  • 来源
    《Energy Conversion & Management》 |2014年第10期|548-560|共13页
  • 作者单位

    Key Laboratory of Industrial Internet of Things and Networked Control, Ministry of Education, Chongqing University of Posts and Telecommunications, Chongqing 400065, China, Research Center on Complex Power System Analysis and Control, Chongqing University of Posts and Telecommunications, Chongqing 400065, China, Dept. of Electrical Engineering, Hubei Minzu University, Enshi 445000, China;

    Key Laboratory of Industrial Internet of Things and Networked Control, Ministry of Education, Chongqing University of Posts and Telecommunications, Chongqing 400065, China, Research Center on Complex Power System Analysis and Control, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;

    Hubei Energy Group Qiyueshan Wind Power Co., Ltd., Lichuan 445400, China;

    Key Laboratory of Industrial Internet of Things and Networked Control, Ministry of Education, Chongqing University of Posts and Telecommunications, Chongqing 400065, China, Research Center on Complex Power System Analysis and Control, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multi-objective optimal reactive power; dispatch; Chaotic improved PSO-based multiobjective optimization; Crossover operator; Constrain-prior Pareto-dominance method; Power losses; L index; Pareto optimal;

    机译:多目标最优无功功率;调度;基于混沌改进的PSO的多目标优化;交叉运算符;约束先验帕累托支配法;功率损耗;L指数帕累托最优;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号