首页> 外文期刊>Emerging Topics in Computing, IEEE Transactions on >A Reinforcement Learning-Based ToD Provisioning Dynamic Power Management for Sustainable Operation of Energy Harvesting Wireless Sensor Node
【24h】

A Reinforcement Learning-Based ToD Provisioning Dynamic Power Management for Sustainable Operation of Energy Harvesting Wireless Sensor Node

机译:基于强化学习的ToD供应动态功率管理,以实现能量收集无线传感器节点的可持续运行

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a reinforcement learning-based throughput on demand (ToD) provisioning dynamic power management method (RLTDPM) is proposed for sustaining perpetual operation and satisfying the ToD requirements for today's energy harvesting wireless sensor node (EHWSN). The RLTDPM monitors the environmental state of the EHWS and adjusts their operational duty cycle under criteria of energy neutrality to meet the demanded throughput. Outcomes of these observation-adjustment interactions are then evaluated by feedback/reward that represents how well the ToD requests are met; subsequently, the observation-adjustment-evaluation process, so-called reinforcement learning, continues. After the learning process, the RLTDPM is able to autonomously adjust the duty cycle for satisfying the ToD requirement, and in doing so, sustain the perpetual operation of the EHWSN. Simulations of the proposed RLTDPM on a wireless sensor node powered by a battery and solar cell for image sensing tasks were performed. Experimental results demonstrate that the achieved demanded throughput is improved 10.7% for the most stringent ToD requirement, while the residual battery energy of the RLTDPM is improved 7.4% compared with an existing DPM algorithm for EHWSN with image sensing purpose.
机译:本文提出了一种基于增强学习的按需吞吐量(ToD)调配动态功率管理方法(RLTDPM),以维持永久运行并满足当今能量收集无线传感器节点(EHWSN)的ToD要求。 RLTDPM监视EHWS的环境状态,并根据能源中和标准调整其运行占空比,以满足所需的吞吐量。然后通过反馈/奖励来评估这些观察-调整交互作用的结果,这些反馈/奖励表示如何满足ToD请求;随后,观察调整评估过程,即所谓的强化学习,继续进行。在学习过程之后,RLTDPM能够自动调整占空比以满足ToD要求,并以此维持EHWSN的永久运行。在电池和太阳能电池供电的无线传感器节点上对拟议的RLTDPM进行了仿真,以完成图像传感任务。实验结果表明,与现有的用于图像感应的EHWSN DPM算法相比,对于最严格的ToD要求,已实现的所需吞吐量提高了10.7%,而RLTDPM的剩余电池能量提高了7.4%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号