首页> 外文期刊>Emerging Topics in Computing, IEEE Transactions on >Social Sensors Based Online Attention Computing of Public Safety Events
【24h】

Social Sensors Based Online Attention Computing of Public Safety Events

机译:基于社交传感器的公共安全事件在线关注度计算

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, the probability of public safety events around the world increase quickly. Recently, with the development of mobile network and intelligent mobile phones, social media users play an important role of the evolution and management of a public safety event. One of the important functions of Weibo is to monitor real time public safety events, such as fire, explosion, traffic jam, etc. Weibo users can be seen as social sensors and Weibo can be seen as the sensor platform. In this paper, a crowdsensing based online attention computing method of public safety events is proposed. The proposed method contains three steps. First, a mobile crowdsensing based social media crawler is given. Second, spatial and temporal information is used to analyze the online attention of the public safety event. At last, the proposed model based online attention governance system is given. The system collected the online attention data from Weibo. Besides, given the Weibo posts related to a detected public safety event, the proposed method targets at mining the multi-modal information, as well as storytelling the online attention of the public safety event precisely and concisely. Extensive experiment studies on real-world microblog datasets to demonstrate the superiority of the proposed framework. Case studies on real data sets show the proposed model has good performance and high effectiveness in the analysis of public safety events.
机译:如今,世界范围内发生公共安全事件的可能性迅速增加。近年来,随着移动网络和智能手机的发展,社交媒体用户在公共安全事件的发展和管理中起着重要作用。微博的重要功能之一是监视实时的公共安全事件,例如火灾,爆炸,交通拥堵等。微博用户可以被视为社交传感器,微博可以被视为传感器平台。本文提出了一种基于人群感知的公共安全事件在线关注度计算方法。所提出的方法包括三个步骤。首先,给出了基于移动人群感知的社交媒体爬虫。其次,时空信息用于分析公共安全事件的在线关注度。最后,提出了基于模型的在线注意力治理系统。系统从微博收集在线关注数据。此外,考虑到与检测到的公共安全事件有关的微博帖子,该方法旨在挖掘多模式信息,并准确,简明地讲述公共安全事件的在线关注。在现实世界的微博数据集上进行了广泛的实验研究,以证明所提出框架的优越性。对真实数据集的案例研究表明,该模型在分析公共安全事件方面具有良好的性能和较高的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号