首页> 外文期刊>Emerging Topics in Computing, IEEE Transactions on >Runtime Support for Multiple Offload-Based Programming Models on Clustered Manycore Accelerators
【24h】

Runtime Support for Multiple Offload-Based Programming Models on Clustered Manycore Accelerators

机译:群集Manycore加速器上对基于多个卸载的编程模型的运行时支持

获取原文
获取原文并翻译 | 示例

摘要

Heterogeneous systems coupling a main host processor with one or more manycore accelerators are being adopted virtually at every scale to achieve ever-increasing GOps/Watt targets. The increased hardware complexity of such systems is paired at the application level by a growing number of applications concurrently running on the system. Techniques that enable efficient accelerator resources sharing, supporting multiple programming models will thus be increasingly important for future heterogeneous SoCs. In this paper we present a runtime system for a cluster-based manycore accelerator, optimized for the concurrent execution of offloaded computation kernels from different programming models. The runtime supports spatial partitioning, where clusters can be grouped into several virtual accelerator instances. Our runtime design is modular and relies on a generic component for resource (cluster) scheduling, plus specialized components which deploy generic offload requests into the target programming model semantics. We evaluate the proposed runtime system on two real heterogeneous systems, focusing on two concrete use cases: i) single-user, multi-application high-end embedded systems and ii) multi-user, multi-workload low-power microservers. In the first case, our approach achieves 93 percent efficiency in terms of available accelerator resource exploitation. In the second case, our support allows 47 percent performance improvement compared to single-programming model systems.
机译:实际上,在每个规模上都采用了将主主机处理器与一个或多个manycore加速器耦合的异构系统,以实现不断增长的GOps / Watt目标。在系统级别上同时运行的越来越多的应用程序会在应用程序级别上使此类系统的硬件复杂性增加。因此,支持高效的加速器资源共享,支持多种编程模型的技术对于未来的异构SoC而言将越来越重要。在本文中,我们提出了一个用于基于集群的多核加速器的运行时系统,该系统针对并发执行来自不同编程模型的卸载计算内核进行了优化。运行时支持空间分区,可以将集群分为几个虚拟加速器实例。我们的运行时设计是模块化的,并且依赖于用于资源(集群)调度的通用组件,以及将通用卸载请求部署到目标编程模型语义中的专用组件。我们在两个实际的异构系统上评估了拟议的运行时系统,并着重于两个具体的用例:i)单用户,多应用程序高端嵌入式系统以及ii)多用户,多工作负载的低功耗微服务器。在第一种情况下,我们的方法就可用的加速器资源开发而言实现了93%的效率。在第二种情况下,与单编程模型系统相比,我们的支持可使性能提高47%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号