首页> 外文期刊>Emerging Topics in Computing, IEEE Transactions on >High Performance Computing for Cyber Physical Social Systems by Using Evolutionary Multi-Objective Optimization Algorithm
【24h】

High Performance Computing for Cyber Physical Social Systems by Using Evolutionary Multi-Objective Optimization Algorithm

机译:使用进化多目标优化算法对网络物理社会系统的高性能计算

获取原文
获取原文并翻译 | 示例

摘要

Cyber-physical social systems (CPSS) is an emerging complicated topic which is a combination of cyberspace, physical space, and social space. Many problems in CPSS can be mathematically modelled as optimization problems, and some of them are multi-objective optimization (MOO) problems (MOPs). In general, the MOPs are difficult to solve by traditional mathematical programming methods. High performance computing with much faster speed is required to address these issues. In this paper, a kind of high performance computing approaches, evolutionary multi-objective optimization (EMO) algorithms, is used to deal with these MOPs. A floorplanning case study is presented to demonstrate the feasibility of our proposed approach. B*-tree and a multistep simulated annealing (MSA) algorithm are cooperatively used to solve this case. As per experimental results for this case, the proposed method is well capable of searching for feasible floorplan solutions, and it can reach 74.44 percent (268/360) success rates for floorplanning problems.
机译:网络身体社会系统(CPS)是一个新兴复杂的主题,是网络空间,物理空间和社交空间的组合。 CPS中的许多问题可以在数学上建模为优化问题,其中一些是多目标优化(MOO)问题(MOP)。通常,MOP难以通过传统的数学规划方法解决。需要高性能计算,以满足这些问题需要更快的速度。本文使用了一种高性能计算方法,进化多目标优化(EMO)算法,用于处理这些拖布。提出了一种地板案例研究以证明我们提出的方法的可行性。 B * -tree和多步模拟退火(MSA)算法是合作用来解决这种情况的算法。根据这种情况的实验结果,所提出的方法能够搜索可行的地板解决方案,并且可以达到平面问题的74.44%(268/360)成功率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号