首页> 外文期刊>Emerging and Selected Topics in Circuits and Systems, IEEE Journal on >Towards a Cortical Prosthesis: Implementing A Spike-Based HMAX Model of Visual Object Recognition in Silico
【24h】

Towards a Cortical Prosthesis: Implementing A Spike-Based HMAX Model of Visual Object Recognition in Silico

机译:走向皮质假体:在Silico中实现基于Spike的视觉对象识别HMAX模型

获取原文
获取原文并翻译 | 示例

摘要

Object recognition and categorization are computationally difficult tasks that are performed effortlessly by humans. Attempts have been made to emulate the computations in different parts of the primate cortex to gain a better understanding of the cortex and to design brain–machine interfaces that speak the same language as the brain. The HMAX model proposed by Riesenhuber and Poggio and extended by Serre attempts to truly model the visual cortex. In this paper, we provide a spike-based implementation of the HMAX model, demonstrating its ability to perform biologically-plausible MAX computations as well as classify basic shapes. The spike-based model consists of 2514 neurons and 17$thinspace$ 305 synapses (S1 Layer: 576 neurons and 7488 synapses, C1 Layer: 720 neurons and 2880 synapses, S2 Layer: 576 neurons and 1152 synapses, C2 Layer: 640 neurons and 5760 synapses, and Classifier: 2 neurons and 25 synapses). Without the limits of the retina model, it will take the system 2 min to recognize rectangles and triangles in 24$,times,$ 24 pixel images. This can be reduced to 4.8 s by rearranging the lookup table so that neurons which have similar responses to the same input(s) can be placed on the same row and affected in parallel.
机译:对象识别和分类是人类不费力地执行的计算难题。已经尝试在灵长类动物皮层的不同部分中模拟计算,以更好地理解皮层,并设计与大脑使用相同语言的人机界面。由Riesenhuber和Poggio提出并由Serre扩展的HMAX模型试图对视觉皮层进行真正的建模。在本文中,我们提供了基于尖峰的HMAX模型实现,展示了其执行生物学上合理的MAX计算以及对基本形状进行分类的能力。基于峰值的模型由2514个神经元和17个瘦空间305个突触组成(S1层:576个神经元和7488个突触,C1层:720个神经元和2880个突触,S2层:576个神经元和1152个突触,C2层:640个神经元和5760个突触和分类器:2个神经元和25个突触)。在没有视网膜模型的限制的情况下,系统需要2分钟才能识别24××24像素图像中的矩形和三角形。通过重新排列查找表,可以将其减少到4.8 s,以便可以将对相同输入具有相似响应的神经元放在同一行上并并行影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号