首页> 外文期刊>Emerging and Selected Topics in Circuits and Systems, IEEE Journal on >LUT Cascades Based on Edge-Valued Multi-Valued Decision Diagrams: Application to Packet Classification
【24h】

LUT Cascades Based on Edge-Valued Multi-Valued Decision Diagrams: Application to Packet Classification

机译:基于边值多值决策图的LUT级联:在数据包分类中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a packet classifier using multiple LUT cascades for edge-valued multi-valued decision diagrams (EVMDDs ). Since the proposed one uses both DSP blocks and on-chip memories, it can efficiently use the available FPGA resources. Thus, it can realize a parallel packet classifier on a single-chip FPGA for the next generation 400 Gb/s Internet link rate (IEEE 802.3). Since it is a memory-based one, the power consumption is lower than the TCAM-based one. Also, we proposed an on-line update method that can be done without intermitting the packet classification. Compared with the conventional off-line update which requires resynthesis of the re-generated HDL codes, it drastically reduces the update time. Although the proposed on-line update requires additional hardware, the overhead is only 8.5% of the original LUT cascades, which is acceptable. We implemented a two-parallel packet classifier on a Virtex 7 VC707 evaluation board. The system throughput is 640 Gb/s for minimum packet size (40 Bytes). For the performance per memory, the proposed architecture is 2.21 times higher than existing methods. For the power consumption per performance, the proposed architecture is 11.95 times lower than existing methods.
机译:本文提出了一种针对边缘值多值决策图(EVMDD)使用多个LUT级联的数据包分类器。由于提出的方案同时使用了DSP模块和片上存储器,因此可以有效地利用可用的FPGA资源。因此,它可以在单芯片FPGA上实现用于下一代400 Gb / s Internet链接速率(IEEE 802.3)的并行数据包分类器。由于它是基于存储器的存储器,因此功耗低于基于TCAM的存储器。此外,我们提出了一种在线更新方法,该方法可以在不中断数据包分类的情况下完成。与需要重新合成重新生成的HDL代码的常规离线更新相比,它大大减少了更新时间。尽管建议的在线更新需要额外的硬件,但是开销仅为原始LUT级联的8.5%,这是可以接受的。我们在Virtex 7 VC707评估板上实现了两个并行的数据包分类器。对于最小数据包大小(40字节),系统吞吐量为640 Gb / s。对于每个内存的性能,建议的体系结构比现有方法高2.21倍。对于每性能的功耗,建议的体系结构比现有方法低11.95倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号