首页> 外文期刊>Emerging and Selected Topics in Circuits and Systems, IEEE Journal on >Deep Learning-Aided Belief Propagation Decoder for Polar Codes
【24h】

Deep Learning-Aided Belief Propagation Decoder for Polar Codes

机译:深度学习辅助信仰传播解码解码器

获取原文
获取原文并翻译 | 示例

摘要

This paper presents deep learning (DL) methods to optimize polar belief propagation (BP) decoding and concatenated LDPC-polar codes. First, two-dimensional offset Min-Sum (2- D OMS) decoding is proposed to improve the error-correction performance of existing normalized Min-Sum (NMS) decoding. Two optimization methods used in DL, namely back-propagation and stochastic gradient descent, are exploited to derive the parameters of proposed algorithms. Numerical results demonstrate that there is no performance gap between 2-D OMS and exact BP on various code lengths. Then the concatenated OMS algorithms with low complexity are presented for concatenated LDPC-polar codes. As a result, the optimized concatenated OMS decoding yields error-correction performance with CRC-aided successive cancellation list (CA-SCL) decoder of list size 2 on length-1024 polar codes. In addition, the efficient hardware architectures of scalable polar OMS decoder are described and the proposed decoder is reconfigurable to support three code lengths ( N = 256, 512, 1024) and two decoding algorithms (2-D OMS and concatenated OMS). The polar OMS decoder implemented on 65 nm CMOS technology achieves a maximum coded throughput of 5.4 Gb/s at E-b/N-0 = 4 dB for code length 1024 and 7.5 Gb/s at E-b/N-0 = 3.5 dB for code length 256, which are comparable to the state-of-the-art polar BP decoders. Moreover, a 5.1 Gb/s throughput at E-b/N-0 = 4 dB is achieved under concatenated OMS decoding mode for code length 1024 with a latency of 200 ns, which is superior to existing CA-SCL decoders that have similar error-correction performance.
机译:本文介绍了深度学习(DL)方法,优化极性信仰传播(BP)解码和连接的LDPC极性代码。首先,提出了二维偏移最小和(2-D OMS)解码,以改善现有归一化最小和(NMS)解码的纠错性能。利用DL,即回到传播和随机梯度下降的两个优化方法,以导出所提出的算法的参数。数值结果表明,在各种代码长度上没有2-D OMS和精确的BP之间没有性能差距。然后呈现具有低复杂性的连接OMS算法,用于级联的LDPC极性代码。结果,优化的级联OMS解码产生误差校正性能,在长度-1024极码上的列表大小2的CRC辅助连续消除列表(CA-SCL)解码器。另外,描述可伸缩极性OMS解码器的有效硬件架构,并且所提出的解码器可重新配置以支持三个代码长度(n = 256,512,1024)和两个解码算法(2-D oMS和连接OMS)。在65nm CMOS技术上实现的极性OMS解码器实现了EB / N-0 = 4 dB的最大编码吞吐量,用于代码长度1024和EB / N-0 = 3.5dB的7.5 GB / s以进行代码长度256,其与最先进的极性BP解码器相当。此外,EB / N-0 = 4dB的5.1GB / s吞吐量是在连接的OMS解码模式下实现的,用于代码长度1024,其延迟为200ns,其优于具有相似纠错的现有CA-SCL解码器表现。

著录项

  • 来源
  • 作者单位

    Southeast Univ LEADS Nanjing 210096 Peoples R China|Southeast Univ Natl Mobile Commun Res Lab Nanjing 210096 Peoples R China|Southeast Univ Quantum Informat Ctr Nanjing 210096 Peoples R China|Purple Mt Labs Nanjing 210096 Peoples R China;

    Southeast Univ LEADS Nanjing 210096 Peoples R China|Southeast Univ Natl Mobile Commun Res Lab Nanjing 210096 Peoples R China|Southeast Univ Quantum Informat Ctr Nanjing 210096 Peoples R China|Purple Mt Labs Nanjing 210096 Peoples R China;

    Tel Aviv Univ Sch Elect Engn IL-6997801 Tel Aviv Israel;

    Natl Tsing Hua Univ Dept Elect Engn Hsinchu 300 Taiwan;

    Southeast Univ LEADS Nanjing 210096 Peoples R China|Southeast Univ Natl Mobile Commun Res Lab Nanjing 210096 Peoples R China|Southeast Univ Quantum Informat Ctr Nanjing 210096 Peoples R China|Purple Mt Labs Nanjing 210096 Peoples R China;

    Southeast Univ LEADS Nanjing 210096 Peoples R China|Southeast Univ Natl Mobile Commun Res Lab Nanjing 210096 Peoples R China|Southeast Univ Quantum Informat Ctr Nanjing 210096 Peoples R China|Purple Mt Labs Nanjing 210096 Peoples R China;

    Southeast Univ LEADS Nanjing 210096 Peoples R China|Southeast Univ Natl Mobile Commun Res Lab Nanjing 210096 Peoples R China|Southeast Univ Quantum Informat Ctr Nanjing 210096 Peoples R China|Purple Mt Labs Nanjing 210096 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Polar codes; belief propagation (BP); deep learning; concatenated codes; ASIC implementation;

    机译:极性代码;信仰传播(BP);深度学习;连接代码;ASIC实施;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号