首页> 外文期刊>Embedded Systems Letters, IEEE >Design Space Exploration of FPGA-Based System With Multiple DNN Accelerators
【24h】

Design Space Exploration of FPGA-Based System With Multiple DNN Accelerators

机译:多个DNN加速器的基于FPGA系统的设计空间探索

获取原文
获取原文并翻译 | 示例

摘要

Many emerging systems concurrently execute multiple applications that use deep neural network (DNN) as a key portion of the computation. To speedup the execution of such DNNs, various hardware accelerators have been proposed in recent works. Deep learning processor unit (DPU) from Xilinx is one such accelerator targeted for field programmable gate array (FPGA)-based systems. We study the runtime and energy consumption for different DNNs on a range of DPU configurations and derive useful insights. Using these insights, we formulate a design space exploration (DSE) strategy to explore tradeoffs in accuracy, runtime, cost, and energy consumption arising due to flexibility in choosing DNN topology, DPU configuration, and FPGA model. The proposed strategy provides a reduction of 28x in the number of design points to be simulated and 23x in the pruning time.
机译:许多新兴系统同时执行使用深神经网络(DNN)作为计算的关键部分的多个应用程序。 为了加速这样的DNN的执行,最近的作品已经提出了各种硬件加速器。 来自Xilinx的深度学习处理器单元(DPU)是针对现场可编程门阵列(FPGA)的系统的一个这样的加速器。 我们在一系列DPU配置上研究不同DNN的运行时间和能耗,并导出有用的见解。 使用这些洞察力,我们制定了设计空间探索(DSE)策略,以探讨由于选择DNN拓扑,DPU配置和FPGA模型而导致的准确性,运行时,成本和能耗。 拟议的策略在待模拟的设计点数和修剪时间中的23倍下,减少了28倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号