首页> 外文期刊>Embedded Systems Letters, IEEE >Low Power Speaker Identification by Integrated Clustering and Gaussian Mixture Model Scoring
【24h】

Low Power Speaker Identification by Integrated Clustering and Gaussian Mixture Model Scoring

机译:通过集成聚类和高斯混合模型评分低功率扬声器识别

获取原文
获取原文并翻译 | 示例

摘要

This letter discusses a novel low-power digital CMOS architecture for speaker identification (SI) by combining $k$ -means clustering with Gaussian mixture model (GMM) scoring. We show that $k$ -means clustering at the front-end reduces the dimensionality of speech features to minimize downstream processing without affecting SI accuracy. Implementation of cluster generator is discussed with novel distance computing and online centroid update datapaths to minimize overhead of the clustering layer (CL). The integrated design achieves $6imes $ lower energy than the conventional for SI among ten speakers.
机译:通过将$ k $ -means聚类与高斯混合模型(GMM)评分相结合,这封信讨论了用于扬声器识别(SI)的新型低功耗数字CMOS架构。我们展示$ k $ -means在前端的聚类减少了语音功能的维度,以最大限度地减少下游处理而不影响SI精度。群集生成器的实现是用新型距离计算和在线质心更新数据路径讨论,以最大限度地减少群集层(CL)的开销。综合设计比十个扬声器中的SI常规实现了6倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号