首页> 外文期刊>Embedded Systems Letters, IEEE >Data Reduction Using Integrated Adaptive Filters for Energy-Efficient in the Clusters of Wireless Sensor Networks
【24h】

Data Reduction Using Integrated Adaptive Filters for Energy-Efficient in the Clusters of Wireless Sensor Networks

机译:使用集成的自适应滤波器在无线传感器网络集群中实现节能的数据缩减

获取原文
获取原文并翻译 | 示例

摘要

Wireless sensor networks (WSNs) are collecting data periodically through randomly dispersed sensors (motes) that typically exploit high energy in monitoring a specified application. Furthermore, dissemination mode in WSN usually produces noisy or missing information that affects the behavior of WSN. Data prediction-based filtering is an important approach to reduce redundant data transmissions, conserve node energy, and overcome the defects resulted from data dissemination. Therefore, this letter introduced a novel model was based on a finite impulse response filter integrated with the recursive least squares adaptive filter for improving the signals transferring function by canceling the unwanted noise and reflections accompanying of the transmitted signal and providing high convergence of the transferred signals. The proposed distributed data predictive model (DDPM) was built upon a distributive clustering model for minimizing the amount of transmitted data aimed to decrease the energy consumption in WSN sensor nodes. The results clarified that DDPM reduced the rate of data transmission to 20. Also, it depressed the energy consumption to 95 throughout the dataset sample. DDPM effectively upgraded the performance of the sensory network by about 19, and hence extend its lifetime.
机译:无线传感器网络(WSN)定期通过随机分散的传感器(动机)收集数据,这些传感器通常在监视特定应用程序时会消耗大量能量。此外,WSN中的传播模式通常会产生嘈杂或丢失的信息,从而影响WSN的行为。基于数据预测的过滤是减少冗余数据传输,节省节点能量并克服数据分发导致的缺陷的重要方法。因此,这封信介绍了一种基于有限脉冲响应滤波器的新型模型,该滤波器与递归最小二乘自适应滤波器集成在一起,可通过消除传输信号伴随的无用噪声和反射并提供传输信号的高收敛性来改善信号传输功能。所提出的分布式数据预测模型(DDPM)建立在分布式聚类模型的基础上,用于最小化旨在减少WSN传感器节点能耗的传输数据量。结果表明,DDPM将数据传输速率降低到20。此外,它在整个数据集样本中将能耗降低到95。 DDPM有效地将传感网络的性能提升了约19,从而延长了其使用寿命。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号