首页> 外文期刊>Embedded Systems Letters, IEEE >Combining Automated Measurement-Based Cost Modeling With Static Worst-Case Execution-Time and Energy-Consumption Analyses
【24h】

Combining Automated Measurement-Based Cost Modeling With Static Worst-Case Execution-Time and Energy-Consumption Analyses

机译:将基于自动测量的成本建模与静态最坏情况执行时间和能耗分析相结合

获取原文
获取原文并翻译 | 示例

摘要

Predicting the temporal behavior of embedded real-time systems is a crucial but challenging task, as it is with the energetic behavior of energy-constrained systems, such as IoT devices. To carry out static analyses in order to determine the worst-case execution time or the worst-case energy consumption of tasks, cost models are inevitable. However, these models are rarely available on a fine-grained level for commercial-off-the-shelf hardware platforms. In this letter, we present NEO, an end-to-end toolchain that automatically generates cost models, which are then integrated into an existing static-analysis tool. NEO exploits automatically generated benchmark programs, which are measured on the target platform and investigated in a virtual machine. Based on the gathered data, we formulate mathematical optimization problems that eventually yield both worst-case execution-time and energy-consumption cost models. In our evaluations with an embedded hardware platform (e.g., ARM Cortex-M0+), we show that the open-source toolchain is able to precisely bound programs' resources while achieving acceptable accuracy.
机译:预测嵌入式实时系统的时间行为是至关重要但具有挑战性的任务,因为能源受限系统(例如IoT设备)的能量行为也是如此。为了进行静态分析以确定最坏情况的执行时间或最坏情况的任务能耗,成本模型是不可避免的。但是,对于现成的商用硬件平台,这些模型很少能在细粒度的级别上获得。在这封信中,我们介绍了NEO,它是一种端到端工具链,可以自动生成成本模型,然后将其集成到现有的静态分析工具中。 NEO利用自动生成的基准程序,这些程序在目标平台上进行测量并在虚拟机中进行调查。基于收集到的数据,我们制定了数学优化问题,最终产生了最坏情况下的执行时间模型和能耗模型。在我们对嵌入式硬件平台(例如ARM Cortex-M0 +)的评估中,我们表明开源工具链能够精确绑定程序资源,同时达到可接受的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号