首页> 外文期刊>Electronics Letters >Robust Gaussian-base radial kernel fuzzy clustering algorithm for image segmentation
【24h】

Robust Gaussian-base radial kernel fuzzy clustering algorithm for image segmentation

机译:基于稳健高斯的径向核模糊聚类算法

获取原文
获取原文并翻译 | 示例

摘要

To perform the image segmentation task, in this Letter, a kernel fuzzy C-means algorithm is introduced, strengthened by a robust Gaussian radial basis function kernel based on M-estimators. It is well-known that these kernels consider the squared difference as a similarity measure, which is not robust to atypical data. In this regard, the main motivation of this contribution is to improve the atypical information tolerance of these kernels, in order to make a better clustering of pixels. Experimental tests were developed considering colour images. The robustness and effectiveness of this proposal are verified by quantitative and qualitative results.
机译:为了执行图像分割任务,在本文中,介绍了一种内核模糊C均值算法,并通过基于M估计的鲁棒高斯径向基函数内核进行了增强。众所周知,这些内核将平方差视为相似性度量,这对非典型数据并不可靠。在这方面,这一贡献的主要动机是为了改善这些内核的非典型信息容忍度,以便使像素更好地聚类。考虑到彩色图像进行了实验测试。该建议的鲁棒性和有效性已通过定量和定性结果验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号