...
首页> 外文期刊>IEEE Transactions on Electron Devices >Electrically Controlled Photocatalytic Reduction of Graphene Oxide Sheets by ZnO Nanostructures, Suitable for Tunable Optoelectronic Applications
【24h】

Electrically Controlled Photocatalytic Reduction of Graphene Oxide Sheets by ZnO Nanostructures, Suitable for Tunable Optoelectronic Applications

机译:ZnO纳米结构的电控光催化还原氧化石墨烯片,适用于可调光电子应用

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this paper, a fully controlled photocatalytic reduction of graphene oxide (GO) sheets is presented in which electrical bias is applied in combination with UV illumination. It is proved that this controllability allows higher conductivities and lower UV illumination times for the achieved reduced graphene oxide (rGO) sheets, which are not allowed without gate voltage. We attribute the observed enhancement mechanism in photocatalytic reduction to electron accumulation at the ZnO/GO interface and decrement of recombination of photogenerated carriers. Then, we applied ZnO nanowires to reduce the GO sheets locally and realize rGO ribbons. The optoelectric response of the fabricated photodetector based on the realized rGO ribbon shows that by controlling the photocatalytic reduction, we can achieve a tunable/selective photodetector (λincident = 520, 595, and 633 nm have been investigated). These functionalities allow tuning the output sensitivity of the device in response to different incident wavelengths along the fabrication process or even after the fabrication process. We believe that the presented approach introduces a new generation of tunable devices suitable for different application fields, including optoelectronics.
机译:在本文中,提出了一种完全受控的氧化石墨烯(GO)片的光催化还原方法,其中电偏压与紫外线照射相结合。事实证明,对于可实现的还原氧化石墨烯(rGO)片材,这种可控性可实现更高的电导率和更低的UV照射时间,而没有栅极电压则不允许这样做。我们归因于光催化还原中观察到的增强机制归因于ZnO / GO界面上的电子积累和光生载流子重组的减少。然后,我们应用ZnO纳米线来局部减少GO薄板并实现rGO带。基于实现的rGO色带制造的光电探测器的光电响应表明,通过控制光催化还原,我们可以实现可调谐/选择性的光电探测器(已研究了λincident= 520、595和633 nm)。这些功能允许沿着制造过程甚至在制造过程之后响应于不同的入射波长来调节设备的输出灵敏​​度。我们认为,提出的方法引入了适用于不同应用领域(包括光电)的新一代可调器件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号