...
【24h】

Calculation of attenuation in wave guides

机译:计算波导中的衰减

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This paper, based on work carried out in 1941?1942, furnishes tables and curves giving (a) field equations for rectangular and circular wave guides, and (b) attenuation constants of wave-modes likely to be met in practice in these guides. The text explains the derivation of the tables and curves. It should be noted that the approach to the problem uses waveengths to describe both the frequency (?e) and the guide itself (?cr). Wavelengths refer always to the dielectric which fills the guide. The free-space wavelength is not used at all. Field amplitudes (Table 1) are expressed in terms of power carried by a wave. To obtain comprehensive formulae, the concept ?characteristic density? of energy, or power, is introduced. Other factors determining field amplitudes enter into the equations in the form of field impedances. A general formula (Table 2) is produced for the attenuation constant ?wcaused by losses in the wall-metal. This formula applied to any mode of wave in rectangular or circular guide, and the values coefficients, which are to be used in a particular case, are given in the table. The curves shown in Fig. 1?4 are of a general character, and may be used for any size of guide and at any frequency. Figs. 1 and 2 deal with the attenuation constant ?w of air-filled copper guides the transmitting region. Fig. 1 shows attenuation of H01, H11 and E11-modes in a rectangular guide, and Fig. 2 shows attenuation of the lowest modes in a circular guide. The curves show the relationship between a quantity (?wD3/2), which is independent of the actual values of linear dimensions, and the ratio ?e/D which is the only term influenced by frequency. Fig. 3 gives the attenuation constant ?d due to loss in the dielectric filling of a guide, and shows the relationship between a quantity (?d??cr), again independent of the values of linear dimensions, and ratio ?e/?cr through which the frequency affects the attenuation. The curves are drawn for a few loss-angles, ?, of the dielectri-nc and are applicable to any wave-mode in any guide, in both the transmitting and attenuating regions. Fig. 4 is a counterpart to Fig. 3, showing the values of phase constant ? instead of attenuation constant ?d.
机译:本文基于1941年至1942年所做的工作,提供了表和曲线,这些表和曲线给出了(a)矩形和圆形波导的场方程,以及(b)这些波导在实践中可能会遇到的衰减常数。文本解释了表格和曲线的派生。应该注意的是,解决问题的方法使用波强度来描述频率(?e)和指南本身(?cr)。波长始终指的是填充波导的电介质。完全不使用自由空间波长。场振幅(表1)以电波携带的功率表示。为了获得全面的公式,概念“特性密度”引入了能量或功率。其他决定磁场振幅的因素以磁场阻抗的形式进入方程式。对于由壁金属的损耗引起的衰减常数Δw,产生了一个通用公式(表2)。该公式适用于矩形或圆形波导中的任何波模式,并且在表中给出了在特定情况下要使用的值系数。图1至图4所示的曲线具有一般性,可以用于任何尺寸的导向器,并且可以以任何频率使用。无花果图1和图2处理了充气铜引导透射区域的衰减常数Δw。图1显示了矩形波导中H01,H11和E11模式的衰减,图2显示了圆形波导中最低模式的衰减。曲线示出了与线性尺寸的实际值无关的量(ΔwD3 / 2)与比率e e / D(其是唯一受频率影响的项)之间的关系。图3给出了由于导线的介电填充损耗而引起的衰减常数Δd,并示出了量(ΔdΔεcr)(又与线性尺寸的值无关)与比率Δe/π之间的关系。频率通过它影响衰减。曲线是针对介电体nc的几个损耗角α绘制的,并且适用于任何波导中的任何波模,无论是在透射区域还是在衰减区域。图4是图3的对应图,示出了相位常数θ的值。而不是衰减常数Δd。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号