首页> 外文期刊>Ecotoxicology and Environmental Safety >Flagellar motility mediates early-stage biofilm formation in oligotrophic aquatic environment
【24h】

Flagellar motility mediates early-stage biofilm formation in oligotrophic aquatic environment

机译:鞭毛运动介于寡替噻植物环境中介导早期生物膜形成

获取原文
获取原文并翻译 | 示例
       

摘要

Flagellar motility enables resource acquisition and noxious substance evasion, underpinning imperative ecological processes in aquatic environments. Yet the underlying mechanism that links flagellar motility with surface attachment and thereby biofilm formation, especially in conditions of limited resource availability, remains elusive. Here, we present experimental and modeling evidence to unveil bacterial motility and biofilm formation under nutrient-limited stresses with Pseudomonas aeruginosa (WT) and its nonflagellated isogenic mutant (Delta fiiC) as model bacteria. Results revealed that boosted flagellar motility of WT strain promoted biofilm initialization to a peak value of 0.99 x 10(7) cells/cm(2) at 1/50 dilution after 20 min incubation. We hypothesized that bacteria can invoke instant motility acceleration for survival confronting nutrient-limited stress, accompanied by optimized chemotactic foraging through sensing ambient chemical gradients. Accordingly, accelerated cell motility in oligotrophic environment created increased cell-cell and cell-surface interactions and thereof facilitated biofilm initialization. It was confirmed by the consistence of modeling predictions and experimental results of cell velocity and surface attachment. With the development of biofilm, promotion effect of flagellar motility responding to nutrient deprivation-stress faded out. Instead, loss of motility profiting increased growth rates and extracellular protein excretion, associated with an enhancement of biofilm development for the mutant in oligotrophic aquatic environment. For both strains, nutrient limitation evidently reduced planktonic cell propagation as expected. Our results offer new insights into the mechanical understanding of biofilm formation shaped by environmental stresses and associating biological responses.
机译:鞭毛运动使资源采集和有害物质逃避,支持水生环境中的势在必行生态过程。然而,与表面附着物的鞭毛动力联系起来的潜在机制,从而形成了生物膜形成,特别是在资源可用性有限的条件下,仍然难以捉摸。在这里,我们提出了实验性和建模证据,以纳入营养有限应力的细菌运动和生物膜形成,与假单胞菌铜绿假单胞菌(WT)及其非闪光的上原突变体(Delta Fiic)作为模型细菌。结果表明,在20分钟孵育后,将WT菌株的增强鞭毛动力促进生物膜初始化在0.99×10(7)℃/ cm(2)的峰值。我们假设细菌可以调用瞬间运动加速,以确保营养限制应激的营养限制应激,伴随着通过感测环境化学梯度优化的趋化学觅食。因此,在寡营养环境中加速细胞活性产生了增加的细胞细胞和细胞表面相互作用,并且促进了生物膜初始化。通过模拟预测的一致性和细胞速度和表面附着的实验结果证实了它。随着生物膜的发展,鞭毛运动响应营养剥夺压力的促进作用逐渐消失。相反,损失了损益增加了增长率和细胞外蛋白排泄的损失,与植物植物环境中突变体的增强有关的生物膜发育。对于菌株,营养素限制明显降低了预期的浮游细胞繁殖。我们的结果为通过环境应力和与生物反应相关的生物膜形成的机械理解提供了新的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号