首页> 外文期刊>Ecological indicators >Extending the viability theory framework of resilience to uncertain dynamics, and application to lake eutrophication
【24h】

Extending the viability theory framework of resilience to uncertain dynamics, and application to lake eutrophication

机译:将韧性的生存力理论框架扩展到不确定的动力学,并应用于湖泊富营养化

获取原文
获取原文并翻译 | 示例
           

摘要

Resilience, the capacity for a system to recover from a perturbation so as to keep its properties and functions, is of growing concern to a wide range of environmental systems. The challenge is often to render this concept operational without betraying it, nor diluting its content. The focus here is on building on the viability theory framework of resilience to extend it to discrete-time stochastic dynamical systems. The viability framework describes properties of the system as a subset of its state space. This property is resilient to a perturbation if it can be recovered and kept by the system after a perturbation: its trajectory can come back and stay in the subset. This is shown to reflect a general definition of resilience. With stochastic dynamics, the stochastic viability kernel describes the robust states, in which the system has a high probability of staying in the subset for a long time. Then, probability of resilience is defined as the maximal probability that the system reaches a robust state within a time horizon. Management strategies that maximize the probability of resilience can be found through dynamic programming. It is then possible to compute a range of statistics on the time for restoring the property. The approach is illustrated on the example of lake eutrophication and shown to foster the use of different indicators that are adapted to distinct situations. Its relevance for the management of ecological systems is also discussed.
机译:复原力是系统从微扰中恢复以保持其特性和功能的能力,它已引起广泛环境系统的关注。面临的挑战通常是在不背叛它或稀释其内容的情况下使其成为可行的概念。这里的重点是建立在弹性的生存力理论框架上,以将其扩展到离散时间随机动力学系统。可行性框架将系统的属性描述为其状态空间的子集。如果可以在发生扰动后将其恢复并由系统保留,则此属性可以抵抗扰动:它的轨迹可以返回并保留在子集中。这表明它反映了弹性的一般定义。利用随机动力学,随机生存力内核描述了鲁棒状态,其中系统很可能长时间停留在子集中。然后,将恢复力的概率定义为系统在时间范围内达到鲁棒状态的最大概率。可以通过动态编程找到使弹性最大的管理策略。这样就可以计算出恢复时间所需的一系列统计数据。以湖泊富营养化为例说明了该方法,并表明该方法促进了适应不同情况的不同指标的使用。还讨论了其与生态系统管理的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号