首页> 外文期刊>Earthquake Engineering & Structural Dynamics >Improving the inverse compensation method for real-time hybrid simulation through a dual compensation scheme
【24h】

Improving the inverse compensation method for real-time hybrid simulation through a dual compensation scheme

机译:通过双重补偿方案改进实时混合仿真的逆补偿方法

获取原文
获取原文并翻译 | 示例

摘要

Real-time hybrid simulation combines experimental testing of physical substructure(s) and numerical simulation of analytical substructure(s), and thus enables the complete structural system to be considered during an experiment. Servo-hydraulic actuators are typically used to apply the command displacements to the physical substructure(s). Inaccuracy and instability can occur during a real-time hybrid simulation if the actuator delay due to servo-hydraulic dynamics is not properly compensated. Inverse compensation is a means to negate actuator delay due to inherent servo-hydraulic actuator dynamics during a real-time hybrid simulation. The success of inverse compensation requires the use of a known accurate value for the actuator delay. The actual actuator delay however may not be known before the simulation. An estimation based on previous experience has to be used, possibly leading to inaccurate experimental results. This paper presents a dual compensation scheme to improve the performance of the inverse compensation method when an inaccurately estimated actuator delay is used in the method. The dual compensation scheme modifies the predicted displacement from the inverse compensation procedure using the actuator tracking error. Frequency response analysis shows that the dual compensation scheme enables the inverse compensation method to compensate for actuator delay over a range of frequencies when an inaccurately estimated actuator delay is utilized. Real-time hybrid simulations of a single-degree-of-freedom system with an elastomeric damper are conducted to experimentally demonstrate the effectiveness of the dual compensation scheme. Exceptional experimental results are shown to be achieved using the dual compensation scheme without the knowledge of the actual actuator delay a priori.
机译:实时混合仿真将物理子结构的实验测试与分析性子结构的数值模拟相结合,因此可以在实验过程中考虑整个结构系统。伺服液压执行器通常用于将指令位移施加到物理子结构。如果由于伺服液压动力学导致的执行器延迟未得到适当补偿,则在实时混合仿真过程中可能会出现不准确和不稳定的情况。逆补偿是一种消除执行器延迟的方法,该延迟是由于在实时混合仿真过程中固有的伺服液压执行器动态特性引起的。反补偿的成功需要对致动器延迟使用已知的准确值。但是,实际的执行器延迟可能在仿真之前是未知的。必须使用基于先前经验的估计,这可能导致不准确的实验结果。本文提出了一种双重补偿方案,以在使用不正确估算的执行器延迟时提高逆补偿方法的性能。双重补偿方案使用执行器跟踪误差来修改逆补偿程序的预测位移。频率响应分析表明,当使用了错误估算的执行器延迟时,双重补偿方案使逆补偿方法能够补偿一定频率范围内的执行器延迟。进行了带有弹性阻尼器的单自由度系统的实时混合仿真,以实验证明双重补偿方案的有效性。使用双重补偿方案显示出了卓越的实验结果,而无需事先知道实际的执行器延迟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号