首页> 外文期刊>Earth Science Informatics >Scaled total-least-squares-based registration for optical remote sensing imagery
【24h】

Scaled total-least-squares-based registration for optical remote sensing imagery

机译:光学遥感影像按比例缩放的基于最小二乘的配准

获取原文
获取原文并翻译 | 示例

摘要

In optical image registration, the reference control points (RCPs) used as explanatory variables in the polynomial regression model are generally assumed to be error free. However, this most frequently used assumption is often invalid in practice because RCPs always contain errors. In this situation, the extensively applied estimator, the ordinary least squares (LS) estimator, is biased and incapable of handling the errors in RCPs. Therefore, it is necessary to develop new feasible methods to address such a problem. This paper discusses the scaled total least squares (STLS) estimator, which is a generalization of the LS estimator in optical remote sensing image registration. The basic principle and the computational method of the STLS estimator and the relationship among the LS, total least squares (TLS) and STLS estimators are presented. Simulation experiments and real remotely sensed image experiments are carried out to compare LS and STLS approaches and systematically analyze the effect of the number and accuracy of RCPs on the performances in registration. The results show that the STLS estimator is more effective in estimating the model parameters than the LS estimator. Using this estimator based on the error-in-variables model, more accurate registration results can be obtained. Furthermore, the STLS estimator has superior overall performance in the estimation and correction of measurement errors in RCPs, which is beneficial to the study of error propagation in remote sensing data. The larger the RCP number and error, the more obvious are these advantages of the presented estimator.
机译:在光学图像配准中,通常认为在多项式回归模型中用作解释变量的参考控制点(RCP)没有错误。但是,由于RCP始终包含错误,因此这种最常用的假设在实践中通常是无效的。在这种情况下,被广泛应用的估计器,即普通最小二乘(LS)估计器存在偏差,无法处理RCP中的错误。因此,有必要开发新的可行方法来解决该问题。本文讨论了缩放的总最小二乘(STLS)估计器,它是LS估计器在光学遥感图像配准中的推广。给出了STLS估计量的基本原理和计算方法,以及LS,总最小二乘和STLS估计量之间的关系。进行了仿真实验和真实的遥感图像实验,以比较LS和STLS方法,并系统地分析了RCP的数量和准确性对配准性能的影响。结果表明,与LS估计器相比,STLS估计器在估计模型参数方面更为有效。使用基于变量误差模型的估计器,可以获得更准确的配准结果。此外,STLS估计器在估计和校正RCP中的测量误差方面具有出色的总体性能,这有利于研究遥感数据中的误差传播。 RCP数量和误差越大,则所提出的估算器的这些优势越明显。

著录项

  • 来源
    《Earth Science Informatics》 |2012年第4期|p.137-152|共16页
  • 作者单位

    State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences &amp Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China;

    Department of Mathematics and Information Science, Chang’an University, Xi’an, 710064, China;

    State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences &amp Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China;

    Department of Mathematics and Information Science, Chang’an University, Xi’an, 710064, China;

    State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences &amp Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Image registration; Polynomial regression model; Error-in-variables model; Ordinary least squares; Scaled total least squares; Singular value decomposition;

    机译:图像配准;多项式回归模型;变量误差模型;普通最小二乘;缩放的总最小二乘;奇异值分解;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号