首页> 外文期刊>DNA and Cell Biology >miRNA: Licensed to Kill the Messenger
【24h】

miRNA: Licensed to Kill the Messenger

机译:miRNA:被许可杀死信使

获取原文
获取原文并翻译 | 示例
           

摘要

Current developments have brought non-coding genes under limelight together with their better-known siblings, the coding genes or mRNA. The 2006 Nobel Prize in Physiology or Medicine was awarded to Andrew Fire and Craig Mello for their 1998 discovery that double-stranded RNA triggers suppression of gene activity in a homology-dependent manner, a process named RNA interference (RNAi). Post-transcriptional regulation of genes was generally regarded as an odd regulatory mechanism for several years until it was learnt that regulatory trans-acting antisense RNAs exist in several species. Identification of a large number of small RNA molecules called microRNAs (miRNAs) elevated the overall field of biomedical RNAi to the striking level of current recognition. miRNAs represent a class of endogenous small (22 nucleotides) RNA molecules that can repress protein synthesis. It is estimated that there are over 600 miRNAs in mammalian cells, and that about 30% of all genes are regulated by miRNA. Current understanding of the molecular mechanism of any disease would be incomplete without factoring in the functional significance of miRNA. In the category of the futuristic RNAi drugs, miRNA-based therapies are promising. The field has progressed rapidly as it relates to cancer research (highlighted in DNA and Cell Biology Volume 26, Number 4), while development in most other areas (highlighted in DNA and Cell Biology Volume 26, Number 3) of biomedical research remains in its infancy, offering significant opportunity for researchers. Approaches to interfere with miRNA function in vivo offer novel therapeutic opportunities. Lessons in gene therapy have taught us that tinkering with the genetic machinery comes with its own set of risks, especially in a clinical setting. miRNA-based therapies are also subject to such risks, which need to be prudently managed. Having acknowledged the potential risk, we have to recognize that new knowledge about the functional roles of miRNA is revolutionizing cell biology and will have a major impact on biomedical research imminently.
机译:当前的发展使非编码基因与它们更知名的同胞,编码基因或mRNA一起受到关注。 2006年诺贝尔生理学或医学奖因安德鲁·弗尔(Andrew Fire)和克雷格·梅洛(Craig Mello)于1998年发现双链RNA以同源性依赖的方式触发基因活性的抑制,这一过程称为RNA干扰(RNAi)。基因的转录后调控多年来一直被认为是一种奇怪的调控机制,直到人们了解到在几种物种中存在调控性反式反义RNA。大量称为microRNA(miRNA)的小RNA分子的鉴定将生物医学RNAi的整体领域提高到了目前公认的惊人水平。 miRNA代表一类可抑制蛋白质合成的内源性小分子(22个核苷酸)。据估计,哺乳动物细胞中存在超过600个miRNA,并且所有基因中约30%受miRNA调控。如果不考虑miRNA的功能重要性,目前对任何疾病的分子机制的理解都是不完整的。在未来的RNAi药物类别中,基于miRNA的疗法很有希望。由于该领域与癌症研究有关(在DNA和细胞生物学第26卷第4期中突出显示),因此该领域发展迅速,而在生物医学研究的大多数其他领域(在DNA和细胞生物学第26卷第3期中突出显示)仍在研究中。婴儿期,为研究人员提供了重要的机会。在体内干扰miRNA功能的方法提供了新的治疗机会。基因治疗方面的经验教训告诉我们,修补基因机制会带来一系列风险,尤其是在临床环境中。基于miRNA的疗法也存在此类风险,需要谨慎管理。在认识到潜在风险后,我们必须认识到有关miRNA功能作用的新知识正在彻底改变细胞生物学,并将很快对生物医学研究产生重大影响。

著录项

  • 来源
    《DNA and Cell Biology》 |2007年第4期|p.193-194|共2页
  • 作者

    Chandan K. Sen Sashwati Roy;

  • 作者单位

    Laboratory of Molecular Medicine, Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University MedicalCenter, Columbus, Ohio.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    RNA; RNA interference (RNAi);

    机译:RNA;RNA干扰(RNAi);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号