首页> 外文期刊>Distributed and Parallel Databases >Prefetched wald adaptive boost classification based Czekanowski similarity MapReduce for user query processing with bigdata
【24h】

Prefetched wald adaptive boost classification based Czekanowski similarity MapReduce for user query processing with bigdata

机译:基于预取的Wald自适应增强分类基于Ceekanowski相似性MapReduce与BigData的用户查询处理

获取原文
获取原文并翻译 | 示例

摘要

With large volumes of data being generated in recent years and the inception of big data analytics on social media necessitates accurate user query processing with minimum time complexity. Several research works have been conducted in this area, to address accuracy and time complexity involved in query processing, in this work, Wald Adaptive Prefetched Boosting Classification based Czekanowski Similarity MapReduce (WAPBC-CSMR) technique is introduced. The WAPBC-CSMR technique uses the big dataset for processing large number of user queries. First, a technique called, Wald Adaptive Prefetched Boosting is employed with the objective of classifying the big dataset into different classes. To reduce the time involved in classification, in this paper a classifier called Gaussian distributive Rocchio is used that achieves significant classification in minimum time. With the classified results, a Likelihood Radio Test is applied to integrate the weak learner results into strong classification results. Then the classified and refined data are stored on the prefetcher cache. Upon reception of multi-dimensional user queries by the prefetch manager, the queries are now split into multiple keywords and are fed into the map phase, where mapping function is performed using Czekanowski Similarity Index with the objective of identifying the repeated jobs with maximum query processing accuracy. Followed by which the relevant data are retrieved from the prefetcher cache and repeated user query task is removed in the reduce phase via statistical function, therefore contributing to minimum time. Result analysis of WAPBC-CSMR is performed with big dataset using different metrics such as query processing accuracy, error rate and processing time for varied number of user queries. The result shows that WAPBC-CSMR technique enhances query processing accuracy and lessens the time as well as the error rate than the conventional methods.
机译:近年来生成的大量数据,并且在社交媒体上开始大数据分析需要准确的用户查询处理,最小时间复杂性。在该领域进行了几项研究作品,以解决查询处理中涉及的准确性和时间复杂性,在此工作中,介绍了基于Wald自适应预取的增强的Cezekanowski相似性MapReduce(WAPBC-CSMR)技术。 WAPBC-CSMR技术使用大数据集来处理大量用户查询。首先,采用了一种称为Wald自适应预取升压的技术,其目的是将大数据集分类为不同的类。为了减少分类所涉及的时间,在本文中,使用称为高斯分布式Rocchio的分类器,以最短的时间实现显着的分类。通过分类结果,应用似然无线电测试将弱学习者的结果集成为强大的分类结果。然后分类和精细数据存储在预取器缓存上。在接收到预取管理器的多维用户查询时,查询将被分成多个关键字,并且被馈送到地图阶段,其中使用Czekanowski相似性索引来执行映射函数,其目的是识别具有最大查询处理的重复作业的目标准确性。然后,从预取高速缓存检索相关数据,并通过统计功能在减小阶段中删除重复的用户查询任务,因此有助于最小时间。 WAPBC-CSMR的结果分析使用不同度量的大数据集进行,例如查询处理精度,错误率和变化数量的用户查询的处理时间。结果表明,WAPBC-CSMR技术增强了查询处理精度,并减少了比传统方法的时间以及错误率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号