首页> 外文期刊>Distributed and Parallel Databases >The G* graph database: efficiently managing large distributed dynamic graphs
【24h】

The G* graph database: efficiently managing large distributed dynamic graphs

机译:G *图形数据库:有效管理大型分布式动态图形

获取原文
获取原文并翻译 | 示例

摘要

From sensor networks to transportation infrastructure to social networks, we are awash in data. Many of these real-world networks tend to be large ("big data") and dynamic, evolving over time. Their evolution can be modeled as a series of graphs. Traditional systems that store and analyze one graph at a time cannot effectively handle the complexity and subtlety inherent in dynamic graphs. Modern analytics require systems capable of storing and processing series of graphs. We present such a system. G* compresses dynamic graph data based on commonalities among the graphs in the series for deduplicated storage on multiple servers. In addition to the obvious space-saving advantage, large-scale graph processing tends to be I/O bound, so faster reads from and writes to stable storage enable faster results. Unlike traditional database and graph processing systems, G* executes complex queries on large graphs using distributed operators to process graph data in parallel. It speeds up queries on multiple graphs by processing graph commonalities only once and sharing the results across relevant graphs. This architecture not only provides scalability, but since G* is not limited to processing only what is available in RAM, its analysis capabilities are far greater than other systems which are limited to what they can hold in memory. This paper presents G*'s design and implementation principles along with evaluation results that document its unique benefits over traditional graph processing systems.
机译:从传感器网络到交通基础设施再到社交网络,我们充斥着大量数据。随着时间的推移,这些现实世界中的许多网络往往是大型的(“大数据”)和动态的。它们的演变可以建模为一系列图形。一次存储和分析一个图的传统系统无法有效处理动态图固有的复杂性和微妙性。现代分析需要能够存储和处理一系列图形的系统。我们提出了这样一个系统。 G *基于该系列图之间的共性来压缩动态图数据,以在多个服务器上进行重复数据删除存储。除了明显的节省空间的优势外,大规模图形处理还倾向于受I / O约束,因此对稳定存储的读写速度更快,结果也更快。与传统的数据库和图形处理系统不同,G *使用分布式运算符对大型图形执行复杂的查询,以并行处理图形数据。它仅处理一次图形通用性并在相关图形之间共享结果,从而加快了对多个图形的查询。这种体系结构不仅提供了可伸缩性,而且由于G *不仅限于处理RAM中可用的内容,因此它的分析功能远胜于其他系统(仅限于它们可以保存在内存中的内容)。本文介绍了G *的设计和实现原理以及评估结果,这些结果证明了G *与传统图形处理系统相比的独特优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号