首页> 外文期刊>Distributed Computing >Window-based greedy contention management for transactional memory: theory and practice
【24h】

Window-based greedy contention management for transactional memory: theory and practice

机译:基于窗口的贪婪竞争事务存储管理:理论与实践

获取原文
获取原文并翻译 | 示例

摘要

We consider greedy contention managers for transactional memory for M xN execution windows of trans actions with M threads and N transactions per thread. We present, formally analyze, and experimentally evaluate three new randomized greedy contention management algorithms for transaction windows. Assuming that each transaction has duration x and conflicts with at most C other transactions inside the window, the first algorithm Offline-Greedy pro duces a schedule of length O(τ·(C+N·log(MN))) with high probability. The offline algorithm depends on knowing the conflict graph which evolves while the execution of the trans actions progresses. The second algorithm Online-Greedy produces a schedule of length that is only a logarithmic factor worse than Offline-Greedy, but does not require knowledge of the conflict graph. The third algorithm Adap tive-Greedy is the adaptive version of the previous algo rithms which produces a schedule of length asymptotically the same as with online algorithm by adaptively guessing the value of C. All of the algorithms exhibit competitive ratio very close to O (s), where s is the number of shared resources, and at the same time, our algorithms provide new non-trivial tradeoffs for greedy transaction scheduling that parameter ize window sizes and transaction conflicts within the exe cution window. We evaluate these window-based algorithms experimentally using the sorted link list, red-black tree, skip list, and vacation benchmarks. The evaluation results confirm their benefits in practical performance throughput and other metrics such as aborts per commit ratio and execution time overhead, along with the non-trivial provable properties of the algorithms.
机译:对于事务存储器的M xN个执行窗口(具有M个线程,每个线程N个事务),我们考虑贪婪的争用管理器。我们提出,正式分析和实验评估了三种新的针对交易窗口的随机贪婪竞争管理算法。假设每个事务的持续时间为x,并且与窗口内最多C个其他事务发生冲突,则第一种算法Offline-Greedy产生概率为O(τ·(C + N·log(MN)))的时间表。离线算法依赖于了解冲突图,该冲突图在事务操作的执行进展时会不断演变。第二种算法Online-Greedy生成的长度调度仅是比Offline-Greedy差的对数因子,但不需要了解冲突图。第三种算法Adaptive-Greedy是先前算法的自适应版本,通过自适应猜测C的值,渐进地产生了与在线算法相同的长度调度表。所有算法都显示出非常接近O(s ),其中s是共享资源的数量,同时,我们的算法为贪婪的事务调度提供了新的非平凡的权衡取舍,参数化了执行窗口中的窗口大小和事务冲突。我们使用排序后的链接列表,红黑树,跳过列表和休假基准对这些基于窗口的算法进行实验评估。评估结果证实了它们在实际性能吞吐量和其他指标(例如,每个提交比率中止和执行时间开销)以及算法的非平凡可证明属性等方面的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号