首页> 外文期刊>Discrete and continuous dynamical systems >ESCAPE RATES AND PERRON-FROBENIUS OPERATORS: OPEN AND CLOSED DYNAMICAL SYSTEMS
【24h】

ESCAPE RATES AND PERRON-FROBENIUS OPERATORS: OPEN AND CLOSED DYNAMICAL SYSTEMS

机译:逃逸率和PERRON-FROBENIUS算子:开放和封闭的动力系统

获取原文
获取原文并翻译 | 示例

摘要

We study the Perron-Frobenius operator P of closed dynamical systems and certain open dynamical systems. We prove that the presence of a large positive eigenvalue ρ of P guarantees the existence of a 2-partition of the phase space for which the escape rates of the open systems defined on the two partition sets are both slower than - log ρ. The open systems with slow escape rates are easily identified from the Perron-Frobenius operators of the closed systems. Numerical results are presented for expanding maps of the unit interval. We also apply our technique to shifts of finite type to show that if the adjacency matrix for the shift has a large positive second eigenvalue, then the shift may be decomposed into two disjoint subshifts, both of which have high topological entropies.
机译:我们研究了封闭动力系统和某些开放动力系统的Perron-Frobenius算符P。我们证明P的大正特征值ρ的存在保证了相空间的2分区的存在,对于该分区,在两个分区集上定义的开放系统的逃逸率均比-logρ慢。从封闭系统的Perron-Frobenius操作员可以轻松识别出逃生率低的开放系统。数值结果用于扩展单位间隔图。我们还将技术应用于有限类型的移位,以表明如果该移位的邻接矩阵具有较大的正第二特征值,则该移位可分解为两个不相交的子移位,这两个子移位都具有较高的拓扑熵。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号