首页> 外文期刊>Discrete and continuous dynamical systems >INFINITE SUM OF THE PRODUCT OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS, ITS ANALYTIC CONTINUATION, AND APPLICATION
【24h】

INFINITE SUM OF THE PRODUCT OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS, ITS ANALYTIC CONTINUATION, AND APPLICATION

机译:指数和对数函数乘积的无限和,其解析连续性和应用

获取原文
获取原文并翻译 | 示例

摘要

We show that the function S_1(x) = ∞/∑/k=1 e~(-2πkx) log k can be ex-rnpressed as the sum of a simple function and an infinite series, whose coefficients are related to the Riemann zeta function. Analytic continuation to the imaginary argument S_1(ix) = K_0(x)-iK_1(x) is made. For x =p/q where p and q are integers with p < q, closed finite sum expressions for K_0(p/q) and K_1(p/q) are derived. The latter results enable us to evaluate Ramanujan's function φ(x) = ∞/∑/k=1((log k)/k-(log(k+x)/(k+x))) for x=-2/3,-3/4 and -5/6, confirming whatrnRamanujan claimed but did not explicitly reveal in his Notebooks. The interpretation of a pair of apparently inscrutable divergent series in the notebooks is discussed. They reveal hitherto unsuspected connections between Ramanujan's φ(x), K_0(x), K_1(x), and the classical formulas of Gauss and Kummer for the digamma function.
机译:我们证明函数S_1(x)=∞/ ∑ / k = 1 e〜(-2πkx)log k可以表示为简单函数和无穷级数的和,其系数与黎曼zeta有关功能。对假想参数S_1(ix)= K_0(x)-iK_1(x)进行解析延续。对于x = p / q,其中p和q是p

著录项

  • 来源
    《Discrete and continuous dynamical systems》 |2010年第1期|P.229-248|共20页
  • 作者单位

    Division of Geological and Planetary Sciences California Institute of Technology Pasadena, California, 91125, USA;

    rnHawaii Baptist Academy 2429 Pali Highway Honolulu, HI, 96817, USA;

    rnDivision of Geological and Planetary Sciences California Institute of Technology Pasadena, California, 91125, USA;

    rnDivision of Geological and Planetary Sciences California Institute of Technology Pasadena, California, 91125, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    special function; radiation; exponential integral; series;

    机译:特殊功能辐射;指数积分系列;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号