首页> 外文期刊>Discrete and continuous dynamical systems >A STUDY ON THE POSITIVE NONCONSTANT STEADY STATES OF NONLOCAL CHEMOTAXIS SYSTEMS
【24h】

A STUDY ON THE POSITIVE NONCONSTANT STEADY STATES OF NONLOCAL CHEMOTAXIS SYSTEMS

机译:非局部趋化系统的正非恒定稳态研究

获取原文
获取原文并翻译 | 示例

摘要

In one spatial dimension, we perform global bifurcation analysis on a general nonlocal Keller-Segel chemotaxis model, showing that positive nonconstant steady states exist, if the chemotactic coefficient χ is larger than a bifurcation value χ_1, which is expressible in terms of the parameters and the nonlocal sampling radius in the model. We then show that the positive solutions of the nonlocal model converge at least in C~2([0,l]) × C~2([0,1]) to that of the corresponding "local" model as the nonlocal sampling radius p → 0+. Finally, we use Helly's compactness theorem to establish the profiles of these steady states, when the ratio of the chemotactic coefficient and the cell diffusion rate is large and the nonlocal sampling radius is small, exhibiting whether they are either spiky, of transition layer structure or just flat everywhere. Our results supply understandings on how the biological parameters affect pattern formation for the nonlocal model. In the limit of p → 0+, our results agree with those of local models studied in Wang and Xu [29].
机译:在一个空间维度上,我们对一般的非局部Keller-Segel趋化性模型进行了全局分叉分析,表明如果趋化系数χ大于分叉值χ_1,则存在正非恒定稳态,这可以用参数和模型中的非局部采样半径。然后,我们表明,非局部模型的正解至少收敛于C〜2([0,l])×C〜2([0,1])到相应的“局部”模型的正解,作为非局部采样半径p→0+。最后,当化学趋化系数与细胞扩散速率之比大且非局部采样半径小时,我们使用Helly紧致性定理建立这些稳态的分布图,显示它们是否是尖峰的,过渡层结构的或尖峰的。到处都是平坦的。我们的结果提供了对生物学参数如何影响非局部模型的模式形成的理解。在p→0+的范围内,我们的结果与Wang和Xu [29]中研究的局部模型的结果一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号