首页> 外文期刊>Discrete and continuous dynamical systems >PHASE-LOCKED TRAJECTORIES FOR DYNAMICAL SYSTEMS ON GRAPHS
【24h】

PHASE-LOCKED TRAJECTORIES FOR DYNAMICAL SYSTEMS ON GRAPHS

机译:图上动力学系统的锁相轨迹

获取原文
获取原文并翻译 | 示例

摘要

We prove a general result on the existence of periodic trajectories of systems of difference equations with finite state space which are phase-locked on certain components which correspond to cycles in the coupling structure. A main tool is the new notion of order-induced graph which is similar in spirit to a Lyapunov function. To develop a coherent theory we introduce the notion of dynamical systems on finite graphs and show that various existing neural networks, threshold networks, reaction-diffusion automata and Boolean monomial dynamical systems can be unified in one parametrized class of dynamical systems on graphs which we call threshold networks with refraction. For an explicit threshold network with refraction and for explicit cyclic automata networks we apply our main result to show the existence of phase-locked solutions on cycles.
机译:我们证明了具有有限状态空间的差分方程系统的周期轨迹的存在的一般结果,该状态轨迹被锁相在与耦合结构中的循环相对应的某些分量上。一个主要工具是阶数诱导图的新概念,它在本质上与Lyapunov函数相似。为了发展连贯的理论,我们引入了有限图上的动力学系统的概念,并表明可以将各种现有的神经网络,阈值网络,反应扩散自动机和布尔单项动力学系统统一到一类参数化的动力学系统上,我们称之为折射的阈值网络。对于具有折射的显式阈值网络和显式的循环自动机网络,我们应用我们的主要结果来证明周期上存在锁相解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号