首页> 外文期刊>Discrete and continuous dynamical systems >SUPPORT PROPERTIES OF SOLUTIONS TO NONLINEAR PARABOLIC EQUATIONS WITH VARIABLE DENSITY IN THE HYPERBOLIC SPACE
【24h】

SUPPORT PROPERTIES OF SOLUTIONS TO NONLINEAR PARABOLIC EQUATIONS WITH VARIABLE DENSITY IN THE HYPERBOLIC SPACE

机译:双曲空间中具有可变密度的非线性抛物方程的解的支持性质

获取原文
获取原文并翻译 | 示例

摘要

We consider the Cauchy problem for a class of nonlinear parabolic equations with variable density in the hyperbolic space, assuming that the initial datum has compact support. We provide simple conditions, involving the behaviour of the density at infinity, so that the support of every nonnegative solution is not compact at some positive time, or it remains compact for any positive time. These results extend to the case of the hyperbolic space those given in [8] for the Cauchy problem in R~n .
机译:我们假设双曲空间中一类具有可变密度的非线性抛物方程的Cauchy问题,假设初始基准具有紧凑的支持。我们提供了简单的条件,涉及无限远处的密度行为,因此,每个非负解的支持在某个正时都不是紧密的,或者在任何正时都保持紧凑。这些结果扩展到双曲空间的情况,在[8]中给出了R〜n中的柯西问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号