首页> 外文期刊>Discrete and continuous dynamical systems >A NOTE ON GLOBAL EXISTENCE TO A HIGHER-DIMENSIONAL QUASILINEAR CHEMOTAXIS SYSTEM WITH CONSUMPTION OF CHEMOATTRACTANT
【24h】

A NOTE ON GLOBAL EXISTENCE TO A HIGHER-DIMENSIONAL QUASILINEAR CHEMOTAXIS SYSTEM WITH CONSUMPTION OF CHEMOATTRACTANT

机译:关于消耗化学趋化剂的高维拟线性趋化系统的整体存在性的注记

获取原文
获取原文并翻译 | 示例

摘要

The Neumann boundary value problem for the chemotaxis system generalizing the prototype {u_t = ▽ · (D(u)▽u) - ▽ · (u▽v), x ϵ Ω, t>0, v_t = ∆v - uv, x ϵ Ω,t > 0, (KS) is considered in a smooth bounded convex domain Ω ⊂ R~N(N ≥ 2), where D(u) ≥ C_D(u + 1)~(m-1) for all u ≥ 0 with some m > 1 and C_D > 0. If m > (3N)/(2N+2) and suitable regularity assumptions on the initial data are given, the corresponding initial-boundary problem possesses a global classical solution. Our paper extends the results of Wang et al. ([24]), who showed the global existence of solutions in the cases m > 2 - 6/(N+4) (N ≥ 3). If the flow of fluid is ignored, our result is consistent with and improves the result of Tao, Winkler ([15]) and Tao, Winkler ([17]), who proved the possibility of global boundedness, in the case that N = 2, m > 1 and N = 3, m > 8/7, respectively.
机译:化学趋化系统的诺伊曼边值问题,对原型进行了概括{u_t =▽·(D(u)▽u)-▽·(u▽v),x ϵΩ,t> 0,v_t = ∆v-uv,x ϵΩ,t> 0,(KS)在光滑有界凸域Ω⊂R〜N(N≥2)中,其中对于所有u,D(u)≥C_D(u +1)〜(m-1) ≥0,且m> 1且C_D>0。如果m>(3N)/(2N + 2)且对初始数据给出适当的正则性假设,则相应的初始边界问题将具有全局经典解。我们的论文扩展了Wang等人的结果。 ([24]),他证明了在m> 2-6 /(N + 4)(N≥3)的情况下全局存在解。如果忽略了流体的流动,我们的结果将与Tao,Winkler([15])和Tao,Winkler([17])的结果相符并得到改善,他们证明了在N = 2,m> 1和N = 3,m> 8/7。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号