首页> 外文期刊>Discrete and continuous dynamical systems >THE STRUCTURE OF ω-LIMIT SETS OF ASYMPTOTICALLY NON-AUTONOMOUS DISCRETE DYNAMICAL SYSTEMS
【24h】

THE STRUCTURE OF ω-LIMIT SETS OF ASYMPTOTICALLY NON-AUTONOMOUS DISCRETE DYNAMICAL SYSTEMS

机译:浅谈渐近非自主离散动力系统ω极限组的结构

获取原文
获取原文并翻译 | 示例

摘要

We consider a discrete non-autonomous semi-dynamical system generated by a family of continuous maps defined on a locally compact metric space. It is assumed that this family of maps uniformly converges to a continuous map. Such a non-autonomous system is called an asymptotically autonomous system. We extend the dynamical system to the metric one-point compactification of the phase space. This is done via the construction of an associated skew-product dynamical system. We prove, among other things, that the omega limit sets are invariant and invariantly connected. We apply our results to two populations models, the Ricker model with no Allee effect and Elaydi-Sacker model with the Allee effect, where it is assumed that the reproduction rate changes with time due to habitat fluctuation.
机译:我们考虑由在局部紧凑的公制空间中定义的连续映射系列产生的离散非自主半动态系统。假设这家族的地图均匀地收敛到连续地图。这种非自治系统称为渐近自主系统。我们将动态系统扩展到相位空间的度量单点压缩。这是通过构造相关的偏斜产品动态系统来完成的。除其他外,我们证明欧米茄限制集是不变的,不变地连接。我们将搜索结果应用于两个人口模型,没有Allee效果的Ricker模型和elaydi-sacker模型,其中假设栖息地波动随着时间的推移而变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号