首页> 外文期刊>Discrete and continuous dynamical systems >BIFURCATION ANALYSIS OF A MOSQUITO POPULATION MODEL FOR PROPORTIONAL RELEASING STERILE MOSQUITOES
【24h】

BIFURCATION ANALYSIS OF A MOSQUITO POPULATION MODEL FOR PROPORTIONAL RELEASING STERILE MOSQUITOES

机译:比例释放无菌蚊子的蚊虫种群模型的分叉分析

获取原文
获取原文并翻译 | 示例

摘要

To reduce or eradicate mosquito-borne diseases, one of effective methods is to control the wild mosquito populations by using the sterile insect technique. Dynamical models with different releasing strategies of sterile mosquitoes have been proposed and investigated in the recent work by Cai et al. [SIAM. J. Appl. Math. 75(2014)], where some basic analysis on the dynamics are given and some complicated dynamical behaviors are found by numerical simulations. While their findings seem exciting and promising, yet the models could exhibit much more complex dynamics than it has been observed. In this paper, to further study the impact of the sterile insect technique on controlling the wild mosquito populations, we systematically study bifurcations and dynamics of the model with a proportional release rate of sterile mosquitoes by bifurcation method. We show that the model undergoes saddle-node bifurcation, subcritical and supercritical Hopf bifurcations, and Bogdanov-Takens bifurcation as the values of parameters vary. Some numerical simulations, including the bifurcation diagram and phase portraits, are also presented to illustrate the theoretical conclusions. These rich and complicated bifurcation phenomena can be regarded as a complement to the work by Cai et al. [SIAM. J. Appl. Math. 75(2014)].
机译:为了减少或根除蚊媒疾病,一种有效的方法是通过使用无菌昆虫技术来控制野生蚊子的数量。 Cai等人在最近的工作中提出并研究了具有不同释放策略的无菌蚊子的动力学模型。 [暹。 J.应用数学。 75(2014)],其中给出了一些基本的动力学分析,并通过数值模拟发现了一些复杂的动力学行为。尽管他们的发现看起来令人兴奋且充满希望,但是这些模型可能会展现出比所观察到的更为复杂的动力学。在本文中,为了进一步研究无菌昆虫技术对控制野生蚊子种群的影响,我们通过分叉法系统地研究了具有比例的无菌蚊子释放率的模型的分叉和动力学。我们表明,随着参数值的变化,模型经历了鞍节点分叉,亚临界和超临界霍普夫分叉以及Bogdanov-Takens分叉。还给出了一些数值模拟,包括分叉图和相图,以说明理论结论。这些丰富而复杂的分叉现象可以视为Cai等人工作的补充。 [暹。 J.应用数学。 75(2014)]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号