首页> 外文期刊>Discrete and continuous dynamical systems >GLOBAL EXISTENCE OF WEAK SOLUTION IN A CHEMOTAXIS-FLUID SYSTEM WITH NONLINEAR DIFFUSION AND ROTATIONAL FLUX
【24h】

GLOBAL EXISTENCE OF WEAK SOLUTION IN A CHEMOTAXIS-FLUID SYSTEM WITH NONLINEAR DIFFUSION AND ROTATIONAL FLUX

机译:具有非线性扩散和旋转通量的化工—流体系统弱解的整体存在

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider the chemotaxis-Navier-Stokes system with nonlinear diffusion and rotational flux given by{n(t) + u .del n = Delta n(m) - del . (uS(x, n, c) . del c), x is an element of Omega, t > 0, c(t) + u . del c = Delta c - c + n , x is an element of Omega, t > 0, u(t) + k(u . del)u = Delta u + del p + n del phi, x is an element of Omega, t > 0 del . u = 0, x is an element of Omega, t > 0in a bounded domain Omega subset of R-3, where k is an element of R, phi is an element of W-2,W-infinity(Omega) and the given tensor-valued function S: (Omega) over bar x [0, infinity)(2)-> R-3x3 satisfiesvertical bar S(x, n, c)vertical bar <= S-0(n+1)(-alpha) for all x is an element of R-3, n >= 0, c >= 0.Imposing no restriction on the size of the initial data, we establish the global existence of a very weak solution while assuming m + alpha > 4/3 and m > 1/3.
机译:在本文中,我们考虑由{n(t)+ u .del n = Delta n(m)-del给出的具有非线性扩散和旋转通量的趋化Navier-Stokes系统。 (uS(x,n,c)。del c),x是Omega的元素,t> 0,c(t)+ u。 del c = Delta c-c + n,x是Omega的元素,t> 0,u(t)+ k(u。del)u = Delta u + del p + n del phi,x是Omega的元素,t> 0 del。 u = 0,x是Omega的元素,在R-3的有界域Omega子集中t> 0,其中k是R的元素,phi是W-2,W-infinity(Omega)的元素,并且给定张量值函数S:横线x [0,无穷大)(2)-> R-3x3上的(Ω)满足竖线S(x,n,c)竖线<= S-0(n + 1)(-alpha ),因为所有x是R-3的元素,n> = 0,c> = 0,不限制初始数据的大小,我们假设m + alpha> 4时,建立了一个非常弱的解的整体存在/ 3,m> 1/3。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号