首页> 外文期刊>Discrete and continuous dynamical systems▼hSeries S >A STUDY OF STRUCTURE-EXPLOITING SQP ALGORITHMS FOR AN OPTIMAL CONTROL PROBLEM WITH COUPLED HYPERBOLIC AND ORDINARY DIFFERENTIAL EQUATION CONSTRAINTS
【24h】

A STUDY OF STRUCTURE-EXPLOITING SQP ALGORITHMS FOR AN OPTIMAL CONTROL PROBLEM WITH COUPLED HYPERBOLIC AND ORDINARY DIFFERENTIAL EQUATION CONSTRAINTS

机译:具有双曲和普通微分方程约束的最优控制问题的结构求SQP算法研究

获取原文
获取原文并翻译 | 示例

摘要

In this article, structure-exploiting optimisation algorithms of the sequential quadratic programming (SQP) type are considered for optimal control problems with control and state constraints. Our approach is demonstrated for a 1D mathematical model of a vehicle transporting a fluid container. The model involves a fully coupled system of ordinary differential equations (ODE) and nonlinear hyperbolic first-order partial differential equations (PDE), although the ideas for exploiting the particular structure may be applied to more general optimal control problems as well. The time-optimal control problem is solved numerically by a full discretisation approach. The corresponding nonlinear optimisation problem is solved by an SQP method that uses exact first and second derivative information. The quadratic subproblems are solved using an active-set strategy. In addition, two approaches are examined that exploit the specific structure of the problem: (A) a direct method for the KKT system, and (B) an iterative method based on combining the limited-memory BFGS method with the preconditioned conjugate gradient method. Method (A) is faster for our model problem, but can be limited by the problem size. Method (B) opens the door for a potential extension of the truck-container model to three space dimensions.
机译:在本文中,针对具有控制和状态约束的最优控制问题,考虑了顺序二次规划(SQP)类型的结构开发优化算法。我们的方法针对运输流体容器的车辆的一维数学模型进行了演示。该模型涉及一个完全耦合的常微分方程(ODE)和非线性双曲型一阶偏微分方程(PDE)的系统,尽管利用特定结构的思想也可以应用于更一般的最优控制问题。时间最优控制问题通过完全离散化方法在数值上得到解决。通过使用精确的一阶和二阶导数信息的SQP方法解决了相应的非线性优化问题。二次子问题使用主动集策略解决。此外,研究了两种利用问题具体结构的方法:(A)KKT系统的直接方法,(B)基于有限内存BFGS方法与预处理共轭梯度方法相结合的迭代方法。方法(A)对于我们的模型问题更快,但可能会受到问题大小的限制。方法(B)为卡车集装箱模型可能扩展到三个空间尺寸打开了大门。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号