首页> 外文期刊>Discrete & Computational Geometry >Fast Dimension Reduction Using Rademacher Series on Dual BCH Codes
【24h】

Fast Dimension Reduction Using Rademacher Series on Dual BCH Codes

机译:在双BCH码上使用Rademacher系列进行快速降维

获取原文
获取原文并翻译 | 示例

摘要

The Fast Johnson–Lindenstrauss Transform (FJLT) was recently discovered by Ailon and Chazelle as a novel technique for performing fast dimension reduction with small distortion from ℓ 2 d to ℓ 2 k in time O(max {dlog d,k 3}). For k in [Ω(log d),O(d 1/2)], this beats time O(dk) achieved by naive multiplication by random dense matrices, an approach followed by several authors as a variant of the seminal result by Johnson and Lindenstrauss (JL) from the mid 1980s. In this work we show how to significantly improve the running time to O(dlog k) for k=O(d 1/2−δ ), for any arbitrary small fixed δ. This beats the better of FJLT and JL. Our analysis uses a powerful measure concentration bound due to Talagrand applied to Rademacher series in Banach spaces (sums of vectors in Banach spaces with random signs). The set of vectors used is a real embedding of dual BCH code vectors over GF(2). We also discuss the number of random bits used and reduction to ℓ 1 space. The connection between geometry and discrete coding theory discussed here is interesting in its own right and may be useful in other algorithmic applications as well.
机译:快速约翰逊-林登施特劳斯变换(FJLT)是Ailon和Chazelle最近发现的,它是一种新的技术,可以实现从dimension 2 d 到ℓ 2 k 在时间O(最大{dlog d,k 3 })。对于[Ω(log d),O(d 1/2 )]中的k,这击败了通过随机稠密矩阵的朴素乘法获得的时间O(dk),这种方法随后被多位作者采用Johnson和Lindenstrauss(JL)从1980年代中期开始的开创性结果的变体。在这项工作中,我们展示了对于任意小的固定δ,对于k = O(d 1 /2-δ),如何显着改善运行时间到O(dlog k)。这优于FJLT和JL。我们的分析使用了强大的度量浓度边界,这是因为Talagrand应用于Banach空间中的Rademacher系列(Banach空间中具有随机符号的向量之和)。使用的向量集是在GF(2)上实际嵌入双BCH码向量。我们还将讨论所使用的随机位的数量以及如何减少到 1 个空间。本文讨论的几何与离散编码理论之间的联系本身很有趣,并且在其他算法应用中也可能有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号