首页> 外文期刊>Discrete and continuous dynamical systems >SOLITARY-WAVE SOLUTIONS OF BENJAMIN-ONO AND OTHER SYSTEMS FOR INTERNAL WAVES. Ⅰ. APPROXIMATIONS
【24h】

SOLITARY-WAVE SOLUTIONS OF BENJAMIN-ONO AND OTHER SYSTEMS FOR INTERNAL WAVES. Ⅰ. APPROXIMATIONS

机译:本杰明-ono和其他内部波浪系统的孤立波解。 Ⅰ。 近似值

获取原文
获取原文并翻译 | 示例

摘要

Considered here are systems of partial differential equations arising in internal wave theory. The systems are asymptotic models describing the two-way propagation of long-crested interfacial waves in the Benjamin-Ono and the Intermediate Long-Wave regimes. Of particular interest will be solitary-wave solutions of these systems. Several methods of numerically approximating these solitary waves are put forward and their performance compared. The output of these schemes is then used to better understand some of the fundamental properties of these solitary waves. The spatial structure of the systems of equations is non-local, like that of their one-dimensional, unidirectional relatives, the Benjamin-Ono and the Intermediate Long-Wave equations. As the non-local aspect is comprised of Fourier multiplier operators, this suggests the use of spectral methods for the discretization in space. Three iterative methods are proposed and implemented for approximating traveling-wave solutions. In addition to Newton-type and Petviashvili iterations, an interesting wrinkle on the usual Petviashvili method is put forward which appears to offer advantages over the other two techniques. The performance of these methods is checked in several ways, including using the approximations they generate as initial data in time-dependent codes for obtaining solutions of the Cauchy problem. Attention is then turned to determining speed versus amplitude relations of these families of waves and their dependence upon parameters in the models. There are also provided comparisons between the unidirectional and bidirectional solitary waves. It deserves remark that while small-amplitude solitary-wave solutions of these systems are known to exist, our results suggest the amplitude restriction in the theory is artificial.
机译:这里考虑的是内波理论中出现的部分微分方程的系统。该系统是描述本杰明 - ono和中间长波制度中长冠界面波的双向传播的渐近模型。特别感兴趣的是这些系统的孤立波解。提出了几种数值近似这些孤波的方法,并进行了比较的性能。然后使用这些方案的输出来更好地理解这些孤立波的一些基本属性。等式系统的空间结构是非局部的,类似于它们的一维,单向亲属,Benjamin-ono和中间长波方程的空间结构。由于非本地方面由傅里叶乘数运营商组成,这表明在空间中使用光谱方法。提出并实施了三种迭代方法,用于近似行波解决方案。除了牛顿型和PetviaShvili迭代之外,提出了通常的PETVIASHVILI方法的有趣皱纹,这似乎提供了与其他两种技术的优势。以几种方式检查这些方法的性能,包括使用它们在时间相关代码中产生的近似值,以获得Cauchy问题的解决方案。然后转向注意这些家庭的速度与幅度关系以及对模型中的参数的依赖性。还提供了单向和双向孤立波之间的比较。值得注意的是,虽然已知存在这些系统的小幅度孤立波解决方案,但我们的结果表明理论中的幅度限制是人为的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号