首页> 外文期刊>Discrete and continuous dynamical systems >KATO'S TYPE THEOREMS FOR THE CONVERGENCE OF EULER-VOIGT EQUATIONS TO EULER EQUATIONS WITH DRICHLET BOUNDARY CONDITIONS
【24h】

KATO'S TYPE THEOREMS FOR THE CONVERGENCE OF EULER-VOIGT EQUATIONS TO EULER EQUATIONS WITH DRICHLET BOUNDARY CONDITIONS

机译:KATO的euler-voigt方程收敛到具有Dirichlet边界条件的欧拉方程的型定理

获取原文
获取原文并翻译 | 示例

摘要

After investigating existence and uniqueness of the global strong solutions for Euler-Voigt equations under Dirichlet conditions, we obtain the Kato's type theorems for the convergence of the Euler-Voigt equations to Euler equations. More precisely, the necessary and sufficient conditions that the solution of Euler-Voigt equation converges to the one of Euler equations, as alpha - 0, can be obtained.
机译:在Dirichlet条件下调查欧拉voigt方程的全球强溶液的存在和唯一性后,我们获得了KATO的型式定理,用于欧拉 - voigt方程的收敛到欧拉方程。更确切地说,可以获得euler-voigt方程的溶液将euler-voigt等式的溶液收敛到α-> 0作为α-> 0的必要条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利