首页> 外文期刊>Discrete and continuous dynamical systems >2D INCOMPRESSIBLE EULER EQUATIONS: NEW EXPLICIT SOLUTIONS
【24h】

2D INCOMPRESSIBLE EULER EQUATIONS: NEW EXPLICIT SOLUTIONS

机译:二维不可压缩的Euler方程:新的显式解决方案

获取原文
获取原文并翻译 | 示例

摘要

There are not too many known explicit solutions to the 2-dimensional incompressible Euler equations in Lagrangian coordinates. Special mention must be made of the well-known ones due Gerstner and Kirchhoff, which were already discovered in the 19th century. These two classical solutions share a common characteristic, namely, the dependence of the coordinates from the initial location is determined by a harmonic map, as recognized by Abrashkin and Yakubovich, who more recently -in the 1980s- obtained new explicit solutions with a similar feature.We present a more general method for constructing new explicit solutions in Lagrangian coordinates which contain as special cases all previously known ones. This new approach shows that in fact "harmonic labelings" are special cases of a much larger family.In the classical solutions, the matrix Lie groups were essential in describing the time evolution. We see that also the geodesics in these groups are important.
机译:在拉格朗日坐标中,二维不可压缩的Euler方程没有太多已知的显式解。必须特别提及在19世纪已经发现的著名的Gerstner和Kirchhoff。这两个经典解决方案具有一个共同的特征,即坐标与初始位置的依赖关系由谐波图确定,正如Abrashkin和Yakubovich所认识的那样,他们最近(在1980年代)获得了具有类似特征的新的显式解决方案我们提出了一种在拉格朗日坐标中构造新的显式解的更通用的方法,其中包含所有以前已知的特例。这种新方法表明,实际上“谐和标记”是更大家族的特殊情况。在经典解决方案中,矩阵李群对于描述时间演化至关重要。我们看到,这些组中的测地线也很重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号