首页> 外文期刊>Discrete and continuous dynamical systems >NONLINEAR FOKKER-PLANCK EQUATIONS FOR PROBABILITY MEASURES ON PATH SPACE AND PATH-DISTRIBUTION DEPENDENT SDES
【24h】

NONLINEAR FOKKER-PLANCK EQUATIONS FOR PROBABILITY MEASURES ON PATH SPACE AND PATH-DISTRIBUTION DEPENDENT SDES

机译:路径空间和路径分布相关SDES概率测度的非线性Fokker-Planck方程

获取原文
获取原文并翻译 | 示例

摘要

By investigating path-distribution dependent stochastic differential equations, the following type of nonlinear Fokker-Planck equations for probability measures (mu(t)) t = 0 on the path space l := C([-r(0), 0]; R-d), is analyzed:partial derivative(t)mu(t) = L-t*(,mu t)mu t, t = 0,where mu(t) is the image of mu(t) under the projection l (sic) xi bar right arrow xi(0) is an element of R-d, andL-t(,mu)(xi) :=1/2 Sigma(d)(i,j=1) aij(t, xi, mu) partial derivative(2)/partial derivative(xi(0)i)partial derivative(xi)(0)(j)+ Sigma(d)(i=1) bi(t, xi, mu)partial derivative/partial derivative(xi(0)i), t = 0, xi is an element of l, mu is an element of P-l.Under reasonable conditions on the coefficients a(ij) and b(i), the existence, uniqueness, Lipschitz continuity in Wasserstein distance, total variational norm and entropy, as well as derivative estimates are derived for the martingale solutions.
机译:通过研究与路径分布有关的随机微分方程,可以在路径空间l上针对概率测度(mu(t))t> = 0的以下类型的非线性Fokker-Planck方程::C([-r(0),0] ; Rd)进行分析:偏导数(t)mu(t)= Lt *(,mu t)mu t,t> = 0,其中mu(t)是投影l( sic)xi bar右箭头xi(0)是Rd的元素,L-t(,mu)(xi):= 1/2 Sigma(d)(i,j = 1)aij(t,xi,mu)偏导数(2)/偏导数(xi(0)i)偏导数(xi)(0)(j)+ Sigma(d)(i = 1)bi(t,xi,mu)偏导数/偏导数( xi(0)i),t> = 0,xi是l的元素,mu是Pl的元素。在系数a(ij)和b(i)的合理条件下,存在,唯一性,Lipschitz连续性ass解可以得出Wasserstein距离,总变分范数和熵以及导数估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号