首页> 外文期刊>Discrete and continuous dynamical systems >QUANTIZATION COEFFICIENTS FOR ERGODIC MEASURES ON INFINITE SYMBOLIC SPACE
【24h】

QUANTIZATION COEFFICIENTS FOR ERGODIC MEASURES ON INFINITE SYMBOLIC SPACE

机译:无限符号空间上鲁棒性度量的量化系数

获取原文
获取原文并翻译 | 示例

摘要

In this paper we consider an ergodic measure with bounded distortion on a symbolic space generated by an infinite alphabet, and showed that for each r ∈ (0, +∞) there exists a unique κ_r ∈ (0, +∞) such that both the κ_r-dimensional lower and upper quantization coefficients for its image measure m with the support lying on the limit set generated by an infinite conformal iterated function system satisfying the strong open set condition are finite and positive. In addition, it shows that κ_r can be expressed by a simple formula involving the temperature function of the system. The result extends and generalizes a similar result of Roychowdhury established for a finite conformal iterated function system [Bull. Polish Acad. Sci. Math. 57 (2009)].
机译:在本文中,我们考虑了由无限字母生成的符号空间上具有有限失真的遍历测度,并表明对于每个r∈(0,+∞)存在唯一的κ_r∈(0,+∞)使得κ_r维的图像度量m的上下量化系数为有限的正值,其支持位于由满足强开集条件的无限保形迭代函数系统生成的极限集上。另外,它表明κ_r可以用涉及系统温度函数的简单公式表示。该结果扩展并推广了Roychowdhury为有限的保形迭代函数系统建立的类似结果。波兰科学院。科学数学。 57(2009)]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号