首页> 外文期刊>Discrete and continuous dynamical systems >INTEGRAL REPRESENTATIONS FOR BRACKET-GENERATING MULTI-FLOWS
【24h】

INTEGRAL REPRESENTATIONS FOR BRACKET-GENERATING MULTI-FLOWS

机译:支架产生多流的积分表示

获取原文
获取原文并翻译 | 示例

摘要

If f_1, f_2 are smooth vector fields on an open subset of an Euclidean space and [f_1,f_2] is their Lie bracket, the asymptotic formula Ψ_([f_1,f_2])(t_1, t_2)(x) -x = t_1t_2[f_1,f_2](x) + o(t_1t_2),t(1) where we have set Ψ_([f_1,f_2])(t_1,t_2)(x)def/= exp(-t_2f_2) o exp(-t_1 f_1) o exp(t_2f_2) o exp(t_1f_1)(x), is valid for all t_1,t_2 small enough. In fact, the integral, exact formula Ψ_([f_1,f_2])(t_1.t_2)(x)-x= ∫_0~(t_1)∫_0~(t_2)[f_1,f_2]~(s_2,s_1)(Ψ(t_1,s_2)(x))ds_1ds_2, (2) where [f_1,f_2]~(s_2,s_1) (y)def/=D(exp(s_1f_1) oexp(S_2f_2)))~(-1) (y) • [f_1,f_2](exp(s_1f_1) o exp(s_2f_2)(y)), has also been proven. Of course (2) can be regarded as an improvement of (1). In this paper we show that an integral representation like (2) holds true for any iterated Lie bracket made of elements of a family f_1, • • •, f_m of vector fields. In perspective, these integral representations might lie at the basis for extensions of asymptotic formulas involving non-smooth vector fields.
机译:如果f_1,f_2是欧几里德空间的一个开放子集上的光滑向量场,并且[f_1,f_2]是其李括号,则渐近公式Ψ_([f_1,f_2])(t_1,t_2)(x)-x = t_1t_2 [f_1,f_2](x)+ o(t_1t_2),t(1),其中我们已设置Ψ_([f_1,f_2])(t_1,t_2)(x)def / = exp(-t_2f_2)o exp(- t_1 f_1)o exp(t_2f_2)o exp(t_1f_1)(x)对所有足够小的t_1,t_2有效。实际上,积分精确公式Ψ_([f_1,f_2])(t_1.t_2)(x)-x =∫_0〜(t_1)∫_0〜(t_2)[f_1,f_2]〜(s_2,s_1) (Ψ(t_1,s_2)(x))ds_1ds_2,(2)其中[f_1,f_2]〜(s_2,s_1)(y)def / = D(exp(s_1f_1)oexp(S_2f_2)))〜(-1 )(y)•[f_1,f_2](exp(s_1f_1)o exp(s_2f_2)(y))也已得到证明。当然,(2)可以视为对(1)的改进。在本文中,我们表明,对于由矢量场的族f_1,•••,f_m组成的任何迭代的Lie括号,像(2)一样的积分表示成立。从角度来看,这些积分表示可能是扩展涉及非光滑向量场的渐近公式的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号