首页> 外文期刊>Discrete and continuous dynamical systems >PARABOLIC REACTION-DIFFUSION SYSTEMS WITH NONLOCAL COUPLED DIFFUSIVITY TERMS
【24h】

PARABOLIC REACTION-DIFFUSION SYSTEMS WITH NONLOCAL COUPLED DIFFUSIVITY TERMS

机译:具有非局部耦合扩散条件的抛物线反应扩散系统

获取原文
获取原文并翻译 | 示例

摘要

In this work we study a system of parabolic reaction-diffusion equations which are coupled not only through the reaction terms but also by way of nonlocal diffusivity functions. For the associated initial problem, endowed with homogeneous Dirichlet or Neumann boundary conditions, we prove the existence of global solutions. We also prove the existence of local solutions but with less assumptions on the boundedness of the nonlocal terms. The uniqueness result is established next and then we find the conditions under which the existence of strong solutions is assured. We establish several blow-up results for the strong solutions to our problem and we give a criterium for the convergence of these solutions towards a homogeneous state.
机译:在这项工作中,我们研究了一个抛物线反应扩散方程组,该方程组不仅通过反应项而且通过非局部扩散函数进行耦合。对于相关的初始问题,赋予齐次Dirichlet或Neumann边界条件,我们证明了整体解的存在。我们还证明了局部解的存在,但对非局部项的有界性的假设较少。接下来确定唯一性结果,然后我们找到可以保证存在强解的条件。我们为解决问题的有力解决方案建立了一些爆炸式结果,并给出了使这些解决方案趋向均匀状态的标准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号