首页> 外文期刊>Radiation Detection Technology and Methods >CLSTM-KF reconstruction method for a low-activity moving radiation source localization and tracking with a coded-aperture gamma camera
【24h】

CLSTM-KF reconstruction method for a low-activity moving radiation source localization and tracking with a coded-aperture gamma camera

机译:CLSTM-KF重建用于低活动移动辐射源定位的重建方法,用编码孔径伽马摄像机跟踪

获取原文
获取原文并翻译 | 示例

摘要

Background Accurate localization of a low-activity moving radiation source plays an important role in nuclear security and safety. The coded-aperture gamma camera is generally applied to detect a radiation source, but its reconstruction methods may have some limitations when the radiation source is motional and weak. Purpose The purpose of this paper is to improve the quality of the reconstruction images and the localization accuracy when detecting a low-activity moving radiation source with a gamma camera. Method The CLSTM-KF method consists of the CLSTM network and the Kalman filter. The CLSTM network is applied to improve the CNR of reconstruction images by making an adaptive superposition for sequential reconstruction images decoded by the correlation analysis method. After the CLSTM network, a series of sequential positions would be filtered by the Kalman filter. Results By comparing with the traditional methods of the gamma camera, the CLSTM-KF method performs well in improving both the CNR of reconstruction images and the localization accuracy. Moreover, the computation time of the CLSTM-KF method can also meet the application requirements. Conclusion In summary, the CLSTM-KF method provides a better choice than the traditional methods in locating and tracking a low-activity moving radiation source.
机译:背景技术低活动移动辐射源的精确定位在核安全和安全方面发挥着重要作用。通常应用编码孔径伽马摄像机以检测辐射源,但是当辐射源是运动和弱时,其重建方法可能具有一些限制。目的本文的目的是在用伽马相机检测低活动移动辐射源时改善重建图像的质量和定位精度。方法CLSTM-KF方法由CLSTM网络和卡尔曼滤波器组成。通过使相关分析方法解码的顺序重建图像进行自适应叠加来应用CLSTM网络来改善重建图像的CNR。在CLSTM网络之后,将由卡尔曼滤波器过滤一系列顺序位置。结果通过与伽马摄像机的传统方法进行比较,CLSTM-KF方法在改善重建图像的CNR和定位精度方面进行良好。此外,CLSTM-KF方法的计算时间也可以满足应用要求。结论总之,CLSTM-KF方法提供了比定位和跟踪低活动移动辐射源的传统方法更好的选择。

著录项

  • 来源
    《Radiation Detection Technology and Methods》 |2021年第2期|228-237|共10页
  • 作者单位

    Chinese Acad Sci Beijing Engn Res Ctr Radiog Tech & Equipment Inst High Energy Phys Beijing 100049 Peoples R China|Univ Chinese Acad Sci Sch Nucl Sci & Technol Beijing 100049 Peoples R China|Jinan Lab Appl Nucl Sci Jinan 250131 Peoples R China;

    Chinese Acad Sci Beijing Engn Res Ctr Radiog Tech & Equipment Inst High Energy Phys Beijing 100049 Peoples R China|Jinan Lab Appl Nucl Sci Jinan 250131 Peoples R China;

    Chinese Acad Sci Beijing Engn Res Ctr Radiog Tech & Equipment Inst High Energy Phys Beijing 100049 Peoples R China|Jinan Lab Appl Nucl Sci Jinan 250131 Peoples R China;

    Chinese Acad Sci Beijing Engn Res Ctr Radiog Tech & Equipment Inst High Energy Phys Beijing 100049 Peoples R China|Univ Chinese Acad Sci Sch Nucl Sci & Technol Beijing 100049 Peoples R China|Jinan Lab Appl Nucl Sci Jinan 250131 Peoples R China;

    Chinese Acad Sci Beijing Engn Res Ctr Radiog Tech & Equipment Inst High Energy Phys Beijing 100049 Peoples R China|Jinan Lab Appl Nucl Sci Jinan 250131 Peoples R China;

    Chinese Acad Sci Beijing Engn Res Ctr Radiog Tech & Equipment Inst High Energy Phys Beijing 100049 Peoples R China|Univ Chinese Acad Sci Sch Nucl Sci & Technol Beijing 100049 Peoples R China|Jinan Lab Appl Nucl Sci Jinan 250131 Peoples R China;

    Chinese Acad Sci Beijing Engn Res Ctr Radiog Tech & Equipment Inst High Energy Phys Beijing 100049 Peoples R China|Jinan Lab Appl Nucl Sci Jinan 250131 Peoples R China;

    Chinese Acad Sci Beijing Engn Res Ctr Radiog Tech & Equipment Inst High Energy Phys Beijing 100049 Peoples R China|Univ Chinese Acad Sci Sch Nucl Sci & Technol Beijing 100049 Peoples R China|Jinan Lab Appl Nucl Sci Jinan 250131 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Low activity; Coded-aperture gamma camera; Convolutional long short-term memory network; Kalman filter;

    机译:低活动;编码 - 光圈伽玛相机;卷积长短短期内存网络;卡尔曼滤波器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号