首页> 外文期刊>Microsystems & Nanoengineering >Machine learning metrology of cell confinement in melt electrowritten three-dimensional biomaterial substrates
【24h】

Machine learning metrology of cell confinement in melt electrowritten three-dimensional biomaterial substrates

机译:熔融电宽三维生物材料基板中电池监控的机器学习计量

获取原文
           

摘要

Tuning cell shape by altering the biophysical properties of biomaterial substrates on which cells operate would provide a potential shape-driven pathway to control cell phenotype. However, there is an unexplored dimensional scale window of three-dimensional (3D) substrates with precisely tunable porous microarchitectures and geometrical feature sizes at the cells operating length scales (10100m). This paper demonstrates the fabrication of such high-fidelity fibrous substrates using a melt electrowriting (MEW) technique. This advanced manufacturing approach is biologically qualified with a metrology framework that models and classifies cell confinement states under various substrate dimensionalities and architectures. Using fibroblasts as a model cell system, the mechanosensing response of adherent cells is investigated as a function of variable substrate dimensionality (2D vs. 3D) and porous microarchitecture (randomly oriented, non-woven vs. precision-stacked, woven). Single-cell confinement states are modeled using confocal fluorescence microscopy in conjunction with an automated single-cell bioimage data analysis workflow that extracts quantitative metrics of the whole cell and sub-cellular focal adhesion protein features measured. The extracted multidimensional dataset is employed to train a machine learning algorithm to classify cell shape phenotypes. The results show that cells assume distinct confinement states that are enforced by the prescribed substrate dimensionalities and porous microarchitectures with the woven MEW substrates promoting the highest cell shape homogeneity compared to non-woven fibrous substrates. The technology platform established here constitutes a significant step towards the development of integrated additive manufacturingmetrology platforms for a wide range of applications including fundamental mechanobiology studies and 3D bioprinting of tissue constructs to yield specific biological designs qualified at the single-cell level.
机译:通过改变细胞操作的生物材料基材的生物物理性质来调节细胞形状将提供潜在的形状驱动途径以控制细胞表型。然而,具有具有精确可调的多孔微体系结构的三维(3D)基板的未探明的尺寸尺度窗口,并且在电池处的微观的多孔微体系结构和几何特征尺寸在操作长度尺度(10100m)。本文展示了使用熔融电陶陶(MEW)技术制造这种高保真纤维基板的制造。这种先进的制造方法在生物学上具有在各种基板尺寸和架构下模型和分类细胞限制状态的计量框架。使用成纤维细胞作为模型电池系统,研究了粘附细胞的机械抑制响应作为可变衬底维度(2D与3D)和多孔微体系结构的函数(随机取向,无纺布与精密堆叠,编织)。使用共聚焦荧光显微镜模拟单细胞限制状态,结合自动单细胞生物显微镜数据分析工作流程,提取测量的整个细胞和亚细胞焦粘连蛋白特征的定量度量。采用提取的多维数据集用于培训机器学习算法以对细胞形状表型进行分类。结果表明,细胞假设由规定的衬底尺寸和多孔微体系结构强制执行的不同限制状态,与非织造纤维基材相比,促进最高细胞形状均匀性的编织MEW基板。在此建立的技术平台构成了朝向开发综合添加剂制造学平台的重要一步,包括各种应用,包括基本力学研究和组织构建体的3D生物监测,以产生在单细胞水平的特定生物设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号