首页> 外文期刊>Fluids >Towards Uncertainty Quantification of LES and URANS for the Buoyancy-Driven Mixing Process between Two Miscible Fluids—Differentially Heated Cavity of Aspect Ratio 4
【24h】

Towards Uncertainty Quantification of LES and URANS for the Buoyancy-Driven Mixing Process between Two Miscible Fluids—Differentially Heated Cavity of Aspect Ratio 4

机译:朝着浮力驱动的混合过程的不确定度量,纵横比的两个可混溶的流体差相加热腔之间的浮力驱动的混合过程

获取原文
       

摘要

Numerical simulations are subject to uncertainties due to the imprecise knowledge of physical properties, model parameters, as well as initial and boundary conditions. The assessment of these uncertainties is required for some applications. In the field of Computational Fluid Dynamics (CFD), the reliable prediction of hydrogen distribution and pressure build-up in nuclear reactor containment after a severe reactor accident is a representative application where the assessment of these uncertainties is of essential importance. The inital and boundary conditions that significantly influence the present buoyancy-driven flow are subject to uncertainties. Therefore, the aim is to investigate the propagation of uncertainties in input parameters to the results variables. As a basis for the examination of a representative reactor test containment, the investigations are initially carried out using the Differentially Heated Cavity (DHC) of aspect ratio 4 with Ra=2×109 as a test case from the literature. This allows for gradual method development for guidelines to quantify the uncertainty of natural convection flows in large-scale industrial applications. A dual approach is applied, in which Large Eddy Simulation (LES) is used as reference for the Unsteady Reynolds-Averaged Navier–Stokes (URANS) computations. A methodology for the uncertainty quantification in engineering applications with a preceding mesh convergence study and sensitivity analysis is presented. By taking the LES as a reference, the results indicate that URANS is able to predict the underlying mixing process at Ra=2×109 and the variability of the result variables due to parameter uncertainties.
机译:由于物理性质,模型参数以及初始和边界条件不精确地,数值模拟受到不确定性的影响。某些申请需要评估这些不确定性。在计算流体动力学(CFD)领域,在严重反应堆事故后核反应堆遏制的氢分布和压力积聚的可靠预测是一个代表性应用,这些应用程序在这些不确定性评估至关重要。显着影响当前浮力驱动流动的灾年和边界条件受到不确定性的影响。因此,目的是研究不确定性在输入参数中的传播到结果变量。作为检查代表性反应器试验壳的基础,最初使用纵横比4的差分加热腔(DHC)与来自文献的测试案例一起使用纵横比4。这允许逐步制定用于量化大规模工业应用中自然对流流量的不确定性的准则。应用了双方法,其中大型涡流模拟(LES)用作非定常雷诺平均的Navier-Stokes(urans)计算的参考。提出了具有前几种网格融合研究和灵敏度分析的工程应用中的不确定度量的方法。通过将LES作为参考,结果表明,uran能够在RA = 2×109处预测底层混合过程以及由于参数不确定性而导致的结果变量的可变性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号