首页> 外文期刊>Inventions >Characterization of Material Properties Based on Inverse Finite Element Modelling
【24h】

Characterization of Material Properties Based on Inverse Finite Element Modelling

机译:基于逆有限元建模的材料特性表征

获取原文
获取外文期刊封面目录资料

摘要

This paper describes a new approach that can be used to determine the mechanical properties of unknown materials and complex material systems. The approach uses inverse finite element modelling (FEM) accompanied with a designed algorithm to obtain the modulus of elasticity, yield stress and strain hardening material constants of an isotropic hardening material model, as well as the material constants of the Drucker−Prager material model (modulus of elasticity, cap yield stress and angle of friction). The algorithm automatically feeds the input material properties data to finite element software and automatically runs simulations to establish a convergence between the numerical loading−unloading curve and the target data obtained from continuous indentation tests using common indenter geometries. A further module was developed to optimise convergence using an inverse FEM analysis interfaced with a non-linear MATLAB algorithm. A sensitivity analysis determined that the dual spherical and Berkovich (S&B) approach delivered better results than other dual indentation methods such as Berkovich and Vickers (B&V) and Vickers and spherical (V&S). It was found that better convergence values can be achieved despite a large variation in the starting parameter values and/or material constitutive model and such behaviour reflects the uniqueness of the dual S&B indentation in predicting complex material systems. The study has shown that a robust optimization method based on a non-linear least-squares curve fitting function (LSQNONLIN) within MATLAB and ABAQUS can be used to accurately predict a unique set of elastic plastic material properties and Drucker−Prager material properties. This is of benefit to the scientific investigation of properties of new materials or obtaining the material properties at different locations of a part which may be not be similar because of manufacturing processes (e.g., different heating and cooling rates at different locations).
机译:本文介绍了一种新方法,可用于确定未知材料和复杂材料系统的机械性能。该方法使用逆有限元建模(FEM)伴随着设计的算法,获得各向同性硬化材料模型的弹性模量,屈服应力和应变硬化材料常数,以及Drucker&amp的材料常数;普拉格材料模型(弹性模量,盖率应力和摩擦角)。该算法自动将输入材料属性数据馈送到有限元软件,并自动运行模拟,以建立数值加载&amp之间的收敛;#8722;卸载曲线和使用普通的压缩测试从连续压痕测试获得的目标数据。开发了一种进一步的模块,以使用与非线性MATLAB算法接口的逆有限元分析来优化收敛。灵敏度分析确定了双球形和贝尔科维奇(S& amp; b)方法提供的结果比其他双压痕方法(如Berkovich和Vickers)(B& v)和维氏和球形(v& amp; am; amp; s)提供了更好的结果。结果发现,尽管起始参数值和/或材料本构模型的大变化,但是这种行为反映了双S&amp的唯一性,因此可以实现更好的收敛值。该研究表明,基于MATLAB和ABAQUS内的非线性最小二乘曲线拟合功能(LSQNONLIN)的鲁棒优化方法可用于精确地预测一组独特的弹性塑料材料特性和滴漏−普拉格材料特性。这对新材料的性质的科学调查或获得了可能由于制造方法而不是类似的部分的不同位置的材料特性(例如,不同位置的冷却速率)的基础上可能不相似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号